|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Odd Triplets
Given the set {1,2,...,n}, we define f(n,k) as the number of its k-element subsets with an odd sum of elements. For example, f(5,3) = 4, since the set {1,2,3,4,5} has four 3-element subsets having an odd sum of elements, i.e.: {1,2,4}, {1,3,5}, {2,3,4} and {2,4,5}.
When all three values n, k and f(n,k) are odd, we say that they make
an odd-triplet [n,k,f(n,k)].
There are exactly five odd-triplets with n ≤ 10, namely:
[1,1,f(1,1) = 1], [5,1,f(5,1) = 3], [5,5,f(5,5) = 1], [9,1,f(9,1) = 5] and [9,9,f(9,9) = 1].
How many odd-triplets are there with n ≤ 1012 ?
题目:
给定集合 {1,2,...,n},定义 f(n,k) 为其元素和为奇数的 k 元子集的数目。例如,f(5,3)  = 4,因为集合 {1,2,3,4,5} 有 4 个元素和为奇数的 3 元子集:{1,2,4}, {1,3,5}, {2,3,4} 和 {2,4,5}。
当 n, k 和 f(n,k) 的值均为奇数时,我们称它们构成奇数三元组 [n,k,f(n,k)]。
当 n ≤ 10 时有 5 个奇数三元组,也就是:
[1,1,f(1,1) = 1],[5,1,f(5,1) = 3,[5,5,f(5,5) = 1],[9,1,f(9,1) = 5] 和 [9,9,f(9,9) = 1]。
当 n ≤ 1012 时有多少个奇数三元组?
|
|