|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 永恒的蓝色梦想 于 2020-8-30 19:13 编辑
Resilience
A positive fraction whose numerator is less than its denominator is called a proper fraction.
For any denominator, d, there will be d-1 proper fractions; for example, with d = 12:
1/12 , 2/12 , 3/12 , 4/12 , 5/12 , 6/12 , 7/12 , 8/12 , 9/12 , 10/12 , 11/12 .
We shall call a fraction that cannot be cancelled down a resilient fraction.
Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = 4/11 .
In fact, d = 12 is the smallest denominator having a resilience R(d) < 4/10 .
Find the smallest denominator d, having a resilience R(d) < 15499/94744 .
题目:
分子小于分母的正分数叫做真分数。
对于任何分母 d,存在 d-1 个真分数;例如 d = 12 时有:
1/12 , 2/12 , 3/12 , 4/12 , 5/12 , 6/12 , 7/12 , 8/12 , 9/12 , 10/12 , 11/12 。
我们称一个不能化简的分数为弹性分数。
进一步我们定义分母的弹性 R(d),即弹性分数与其真分数的比;例如,R(12) = 4/11 。
实际上, d = 12 为满足弹性R(d) < 4/10 的最小分母。
求最小的分母 d,使得弹性 R(d) < 15499/94744 。
|
|