| 
 | 
 
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册  
 
x
 
 本帖最后由 天下有敌 于 2020-6-20 09:03 编辑  
 
小甲鱼Python  P49 课后作业最后一题 
下面这个  is_prime  方法里面的 for 循环有什么用?谁讲解一下呗。。  为什么要 根+1? 
 
- import math
 
  
- def is_prime(number):
 
 -     if number > 1:
 
 -         if number == 2:
 
 -             return True
 
 -         if number % 2 == 0:
 
 -             return False
 
 -         for current in range(3, int(math.sqrt(number) + 1), 2):
 
 -             if number % current == 0:
 
 -                 return False
 
 -         return True
 
 -     return False
 
  
- def get_primes(number):
 
 -     while True:
 
 -         if is_prime(number):
 
 -             yield number
 
 -         number += 1
 
  
- def solve():
 
 -     total = 2
 
 -     for next_prime in get_primes(3):
 
 -         if next_prime < 2000000:
 
 -             total += next_prime
 
 -         else:
 
 -             print(total)
 
 -             return
 
  
- if __name__ == '__main__':
 
 -     solve()
 
  复制代码 
 
 
这属于算法上的问题,好好考虑一下算法,还要考虑一下素数的定义。  
素数是只有1和本身能整除的整数。所以在求素数的时候,要将素数与1到素数本身中间的所有整数都相除,看是否有整除的数,如果有,那肯定不是素数了。但是从算法上考虑,为了减少重复量,开平方后面的数就不用相除了,因为a/b(平方数)=c(小一点的数),同样a/c=b。举例说明:  
25,开平方以后是5,那么整除2~5就可以了,如果有满足条件的,就是素数。  
这样做可以减少循环次数,素数是因子为1和本身, 如果数c不是素数,则还有其他因子,其中的因子,假如为a,b.其中必有一个大于sqrt(c) ,一个小于sqrt(c) 。所以m必有一个小于或等于其平方根的因数,那么验证素数时就只需要验证到其平方根就可以了。即一个合数一定含有小于它平方根的质因子。 
 
再比如:24的因数有1、2、3、4、6、8、12、24  
按定义应该用2-23去除,但经过分析上面的数可以发现  
1×24、2×12、3×8、4×6  
如果2、3、4是某个数的因数,那么另外几个数也是,反之也一样  
所以为提高效率,可以只检查小于该数平方根的那些数,如24的平方根大于4小于5,检查2-4就可以了!   
 
这个有关于算法,开根号计算素数能很大的提高去重率,+1是因为 range 是左开右闭的,右闭是取不到你最后计算的数值,+1 后就取的到了,你看看上面的资料吧 
 
 
 |   
 
 
 
 |