请帮忙改正错误。并给出改正后的代码
代码:import cv2
import numpy as np
# 1. 分割遥感影像为多块图幅
def split_image(image, num_rows, num_cols):
height, width = image.shape[:2]
row_height = height // num_rows
col_width = width // num_cols
images = []
for r in range(num_rows):
for c in range(num_cols):
start_row = r * row_height
end_row = start_row + row_height
start_col = c * col_width
end_col = start_col + col_width
sub_image = image
images.append(sub_image)
return images
# 2. 分别对每块图幅转为灰度图像
def convert_to_grayscale(images):
grayscale_images = []
for image in images:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
grayscale_images.append(gray_image)
return grayscale_images
# 3. 使用其他边缘检测方法代替Canny算法
# canny算子
# def edge_detection(images):
# edges = []
# for image in images:
# edges_image = cv2.Canny(image, 10, 50)# 调整阈值根据实际情况
# edges.append(edges_image)
# return edges
# sobel算子
def edge_detection(images):
edges = []
for image in images:
# 使用其他边缘检测方法,这里以Sobel算子为例
gradient_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)
gradient_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)
edges_image = cv2.magnitude(gradient_x, gradient_y)
edges.append(edges_image)
return edges
# # 拉普拉斯算子
# def edge_detection(images):
# edges = []
# for image in images:
# edges_image = cv2.Laplacian(image, cv2.CV_8U)
# edges.append(edges_image)
# return edges
# 4. 消除噪声干扰
def denoise(images):
denoised_images = []
for image in images:
# 使用其他滤波方法,这里以高斯滤波为例
denoised_image = cv2.GaussianBlur(image, (5, 5), 0)
denoised_images.append(denoised_image)
return denoised_images
# 5. 将各个图幅合并为一个图幅
def merge_images(images, num_rows, num_cols):
row_height, col_width = images.shape[:2]
merged_image = np.zeros((row_height * num_rows, col_width * num_cols), dtype=np.uint8)
i = 0
for r in range(num_rows):
for c in range(num_cols):
start_row = r * row_height
end_row = start_row + row_height
start_col = c * col_width
end_col = start_col + col_width
merged_image = images
i += 1
return merged_image
# 6. 导出结果
def export_result(image, filename):
cv2.imwrite(filename, image)
# 加载遥感影像
image = cv2.imread(r"C:\\Users\\WINDOWS\\Desktop\\taiyuan\\python\\1=quick_dom.tif")
# 1. 分割遥感影像为多块图幅
num_rows = 3
num_cols = 7
sub_images = split_image(image, num_rows, num_cols)
# 2. 分别对每块图幅转为灰度图像
gray_images = convert_to_grayscale(sub_images)
# 3. 使用其他边缘检测方法代替Canny算法
edges = edge_detection(gray_images)
# 4. 消除噪声干扰
denoised_edges = denoise(edges)
# 5. 将各个图幅合并为一个图幅
merged_image = merge_images(denoised_edges, num_rows, num_cols)
# 6. 导出结果
export_result(merged_image, 'path_to_output1.jpg')
报错:
Traceback (most recent call last):
File "C:\Users\WINDOWS\Desktop\taiyuan\python\segement.py", line 153, in <module>
image = cv2.imread(r"C:\\Users\\WINDOWS\\Desktop\\taiyuan\\python\\1=quick_dom.tif")
cv2.error: OpenCV(4.8.0) D:\a\opencv-python\opencv-python\opencv\modules\imgcodecs\src\loadsave.cpp:79: error: (-215:Assertion failed) pixels <= CV_IO_MAX_IMAGE_PIXELS in function 'cv::validateInputImageSize' 这个错误是由于图像文件的尺寸太大导致的。OpenCV默认限制图像的像素数不超过 CV_IO_MAX_IMAGE_PIXELS ,如果图像的像素数超过了这个限制,就会报错。
为了解决这个问题,你可以尝试以下几种方法:
1. 检查图像文件的路径是否正确。确保文件存在,并且路径中的斜杠使用了正确的转义字符。
2. 尝试使用其他图像文件进行测试,看是否仍然报错。如果其他图像文件可以正常加载,那么可能是当前图像文件的问题。
3. 如果图像文件的尺寸确实很大,你可以尝试缩小图像的尺寸,或者使用其他方法来处理大尺寸图像。例如,你可以将图像切割成更小的块进行处理,然后再将处理后的块合并起来。
另外,你还可以尝试打印出图像的尺寸信息,以便更好地理解问题所在。你可以在加载图像之前添加以下代码:
print("Image shape:", image.shape)
这样可以在报错之前打印出图像的尺寸信息,以便更好地了解图像的大小和是否超过了限制。
希望这些方法能够帮助你解决问题! 错误是由于图像的尺寸超过了OpenCV所允许的最大像素数。可以尝试使用cv2.IMREAD_UNCHANGED标志来解决这个问题,这样可以读取任意大小的图像。
下面是修改后的代码:
import cv2
import numpy as np
# 1. 分割遥感影像为多块图幅
def split_image(image, num_rows, num_cols):
height, width = image.shape[:2]
row_height = height // num_rows
col_width = width // num_cols
images = []
for r in range(num_rows):
for c in range(num_cols):
start_row = r * row_height
end_row = start_row + row_height
start_col = c * col_width
end_col = start_col + col_width
sub_image = image
images.append(sub_image)
return images
# 2. 分别对每块图幅转为灰度图像
def convert_to_grayscale(images):
grayscale_images = []
for image in images:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
grayscale_images.append(gray_image)
return grayscale_images
# 3. 使用其他边缘检测方法代替Canny算法
def edge_detection(images):
edges = []
for image in images:
# 使用其他边缘检测方法,这里以Sobel算子为例
gradient_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)
gradient_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)
edges_image = cv2.magnitude(gradient_x, gradient_y)
edges.append(edges_image)
return edges
# 4. 消除噪声干扰
def denoise(images):
denoised_images = []
for image in images:
# 使用其他滤波方法,这里以高斯滤波为例
denoised_image = cv2.GaussianBlur(image, (5, 5), 0)
denoised_images.append(denoised_image)
return denoised_images
# 5. 将各个图幅合并为一个图幅
def merge_images(images, num_rows, num_cols):
row_height, col_width = images.shape[:2]
merged_image = np.zeros((row_height * num_rows, col_width * num_cols), dtype=np.uint8)
i = 0
for r in range(num_rows):
for c in range(num_cols):
start_row = r * row_height
end_row = start_row + row_height
start_col = c * col_width
end_col = start_col + col_width
merged_image = images[ i]
i += 1
return merged_image
# 6. 导出结果
def export_result(image, filename):
cv2.imwrite(filename, image)
# 加载遥感影像
image = cv2.imread(r"C:\\Users\\WINDOWS\\Desktop\\taiyuan\\python\\1=quick_dom.tif", cv2.IMREAD_UNCHANGED)
# 1. 分割遥感影像为多块图幅
num_rows = 3
num_cols = 7
sub_images = split_image(image, num_rows, num_cols)
# 2. 分别对每块图幅转为灰度图像
gray_images = convert_to_grayscale(sub_images)
# 3. 使用其他边缘检测方法代替Canny算法
edges = edge_detection(gray_images)
# 4. 消除噪声干扰
denoised_edges = denoise(edges)
# 5. 将各个图幅合并为一个图幅
merged_image = merge_images(denoised_edges, num_rows, num_cols)
# 6. 导出结果
export_result(merged_image, 'path_to_output1.jpg')
注意,import cv2 和 import numpy as np 之间需要添加换行符。另外,请确保输入的图像路径是正确的。
如果问题已经解决,请设置最佳答案
页:
[1]