|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
代码:
def merge_images(images, block_size):
num_blocks = len(images)
rows = int(np.sqrt(num_blocks))
cols = rows
merged_image = np.zeros((rows * block_size, cols * block_size), dtype=np.uint8)
for i, image in enumerate(images):
x = (i % cols) * block_size
y = (i // cols) * block_size
merged_image[y:y+image.shape[0], x:x+image.shape[1]] = image
return merged_image
报错:
File "C:\Users\WINDOWS\Desktop\taiyuan\python\segement.py", line 66, in <module>
merged_image = merge_images(denoised_images, block_size)
File "C:\Users\WINDOWS\Desktop\taiyuan\python\segement.py", line 39, in merge_images
merged_image[y:y+image.shape[0], x:x+image.shape[1]] = image
ValueError: could not broadcast input array from shape (17,100) into shape (0,100)
错误原因是在合并图像时,尝试将图像数组赋值给merged_image数组的特定区域时出错。具体地说,错误发生在以下代码行:
merged_image[y:y+image.shape[0], x:x+image.shape[1]] = image
错误信息指出无法将形状为(17,100)的输入数组广播到形状为(0,100)的数组中。
这个错误的原因是merged_image数组的初始值为全零数组,其形状为(rows * block_size, cols * block_size)。然而,在循环中,计算出的y和x的值可能会导致merged_image的切片区域的形状为(0,100),这是因为image的形状可能大于block_size。
为了解决这个问题,我们可以在创建merged_image数组之前,根据图像数量和block_size计算出rows和cols的值,并确保merged_image数组的形状足够容纳所有图像。修改后的代码如下:
import numpy as np
def merge_images(images, block_size):
num_blocks = len(images)
rows = int(np.ceil(np.sqrt(num_blocks))) # 向上取整
cols = rows
merged_image = np.zeros((rows * block_size, cols * block_size), dtype=np.uint8)
for i, image in enumerate(images):
x = (i % cols) * block_size
y = (i // cols) * block_size
merged_image[y:y+image.shape[0], x:x+image.shape[1]] = image
return merged_image
现在,通过在计算rows时使用np.ceil(np.sqrt(num_blocks)),我们确保了merged_image数组的形状足够容纳所有图像。这样,就能够正确地将图像赋值给合并图像的特定区域,避免了报错。
|
|