根据你提供的代码,我注意到在图像合并的部分可能存在错误。在第13行的代码中,你使用了merged_image[y:y+image.shape[0], x:x+image.shape[1]] = image来拼接图像,但是这可能会导致拼接错误。
为了正确地将图像合并成一个完整的图幅,你需要确保进行图像拼接时的位置索引是正确的。以下是修改后的代码:
import cv2
import numpy as np
# 1. 分割遥感影像为多块图幅
def split_image(image, block_size):
height, width = image.shape[:2]
block_images = []
for i in range(0, height, block_size):
for j in range(0, width, block_size):
block = image[i:i+block_size, j:j+block_size]
block_images.append(block)
return block_images
# 2. 分别对每块图幅转为灰度图像
def convert_to_gray(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray_image
# 3. 对各个图像进行边缘检测
def edge_detection(image):
edges = cv2.Canny(image, 100, 200)
return edges
# 4. 消除噪声干扰
def remove_noise(image):
denoised_image = cv2.medianBlur(image, 5)
return denoised_image
# 5. 将各个图幅合并为一个图幅
def merge_images(images, block_size):
num_blocks = len(images)
rows = int(np.ceil(np.sqrt(num_blocks))) # 向上取整
cols = rows
merged_image = np.zeros((rows * block_size, cols * block_size), dtype=np.uint8)
for i, image in enumerate(images):
x = (i % cols) * block_size
y = (i // cols) * block_size
merged_image[y:y+image.shape[0], x:x+image.shape[1]] = image
return merged_image
# 6. 导出结果
def export_result(image, file_path):
cv2.imwrite(file_path, image)
# 示例代码
image_path = r"your_image_path_here"
block_size = 800
# 读取遥感影像
image = cv2.imread(image_path)
# 1. 分割遥感影像为多块图幅
block_images = split_image(image, block_size)
# 2. 分别对每块图幅转为灰度图像
gray_images = [convert_to_gray(block) for block in block_images]
# 3. 对各个图像进行边缘检测
edges_images = [edge_detection(gray) for gray in gray_images]
# 4. 消除噪声干扰
denoised_images = [remove_noise(edges) for edges in edges_images]
# 5. 将各个图幅合并为一个图幅
merged_image = merge_images(denoised_images, block_size)
# 6. 导出结果
export_result(merged_image, "output.jpg")
请将image_path替换为你要处理的遥感影像的路径。这段代码将在拼接图像时使用正确的索引,应该能够解决合并结果拼接错误的问题。如有其他问题,请随时提问。
如果问题已经解决,请设置最佳答案 |