|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 永恒的蓝色梦想 于 2020-8-31 16:32 编辑
Investigating Gaussian Integers
As we all know the equation x2=-1 has no solutions for real x.
If we however introduce the imaginary number i this equation has two solutions: x=i and x=-i.
If we go a step further the equation (x-3)2=-4 has two complex solutions: x=3+2i and x=3-2i.
x=3+2i and x=3-2i are called each others' complex conjugate.
Numbers of the form a+bi are called complex numbers.
In general a+bi and a-bi are each other's complex conjugate.
A Gaussian Integer is a complex number a+bi such that both a and b are integers.
The regular integers are also Gaussian integers (with b=0).
To distinguish them from Gaussian integers with b ≠ 0 we call such integers "rational integers."
A Gaussian integer is called a divisor of a rational integer n if the result is also a Gaussian integer.
If for example we divide 5 by 1+2i we can simplify
in the following manner:
Multiply numerator and denominator by the complex conjugate of 1+2i: 1-2i.
The result is
.
So 1+2i is a divisor of 5.
Note that 1+i is not a divisor of 5 because
.
Note also that if the Gaussian Integer (a+bi) is a divisor of a rational integer n, then its complex conjugate (a-bi) is also a divisor of n.
In fact, 5 has six divisors such that the real part is positive: {1, 1 + 2i, 1 - 2i, 2 + i, 2 - i, 5}.
The following is a table of all of the divisors for the first five positive rational integers:
For divisors with positive real parts, then, we have:
.
For 1 ≤ n ≤ 105, ∑ s(n)=17924657155.
What is ∑ s(n) for 1 ≤ n ≤ 108?
题目:
正如我们所知,x2=-1 这个方程没有整数解
然而,如果我们引入虚数i,这个方程就有两个解:x=i 和 x=-i。
如果我们更进一步, (x-3)2=-4 有两个复数的解:x=3+2i 和 x=3-2i
x=3+2i 和 x=3-2i 互为复数的共轭
a+bi 这种形式的数字就是所谓的复数。一般来说,a+bi 和 a-bi 共轭。
高斯整数定义为:a 和 b都是整数的复数,a+bi。
实数(b=0)也是高斯整数,
为把实数和 b ≠ 0 的高斯整数区别开来,我们把这些整数叫做“有理整数”。
一个有理整数 n 除以一个高斯整数 P,所得的结果若也为高斯整数,那么,这个高斯整数 P 就被叫做 n 的除数。
比如,
我们可以按下面方式进行化简分子分母分别乘以 1+2i 的共轭数: 1-2i.
结果如下
.
所以,1+2i 是 5 的一个除数。
注意,1+i 不是 5 的除数,因为
.
另外还要注意:如果 (a+bi) 是有理整数 N 的除数,那么它的共轭数 (a-bi) 也是 N 的除数。
实际上,5 有六个除数,它们的实部都为正: {1, 1 + 2i, 1 - 2i, 2 + i, 2 - i, 5}。
下表显示了前五个正有理数具有的除数:
由这些实部为正的除数,我们可以得到和为
。
对于 1 ≤ n ≤ 105,∑ s(n)=17924657155
请问,对于 1 ≤ n ≤ 108, ∑ s(n) 是多少?
|
|