鱼C论坛

 找回密码
 立即注册
查看: 3171|回复: 3

题目153:研究高斯整数

[复制链接]
发表于 2016-9-1 00:27:16 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能^_^

您需要 登录 才可以下载或查看,没有账号?立即注册

x
本帖最后由 永恒的蓝色梦想 于 2020-8-31 16:32 编辑
Investigating Gaussian Integers

As we all know the equation x2=-1 has no solutions for real x.
If we however introduce the imaginary number i this equation has two solutions: x=i and x=-i.
If we go a step further the equation (x-3)2=-4 has two complex solutions: x=3+2i and x=3-2i.
x=3+2i and x=3-2i are called each others' complex conjugate.
Numbers of the form a+bi are called complex numbers.
In general a+bi and a-bi are each other's complex conjugate.

A Gaussian Integer is a complex number a+bi such that both a and b are integers.
The regular integers are also Gaussian integers (with b=0).
To distinguish them from Gaussian integers with b ≠ 0 we call such integers "rational integers."
A Gaussian integer is called a divisor of a rational integer n if the result is also a Gaussian integer.
If for example we divide 5 by 1+2i we can simplify p153_formule1.gif   in the following manner:
Multiply numerator and denominator by the complex conjugate of 1+2i: 1-2i.
The result is p153_formule2.gif .
So 1+2i is a divisor of 5.
Note that 1+i is not a divisor of 5 because p153_formule5.gif .
Note also that if the Gaussian Integer (a+bi) is a divisor of a rational integer n, then its complex conjugate (a-bi) is also a divisor of n.

In fact, 5 has six divisors such that the real part is positive: {1, 1 + 2i, 1 - 2i, 2 + i, 2 - i, 5}.
The following is a table of all of the divisors for the first five positive rational integers:

QQ20160831-2@2x.png


For divisors with positive real parts, then, we have: p153_formule6.gif .

For 1 ≤ n ≤ 105, ∑ s(n)=17924657155.

What is ∑ s(n) for 1 ≤ n ≤ 108?


题目:

正如我们所知,x2=-1 这个方程没有整数解

然而,如果我们引入虚数i,这个方程就有两个解:x=i 和 x=-i。

如果我们更进一步, (x-3)2=-4 有两个复数的解:x=3+2i 和 x=3-2i

x=3+2i 和 x=3-2i 互为复数的共轭

a+bi 这种形式的数字就是所谓的复数。一般来说,a+bi 和 a-bi 共轭。

高斯整数定义为:a 和 b都是整数的复数,a+bi。

实数(b=0)也是高斯整数,

为把实数和 b ≠ 0 的高斯整数区别开来,我们把这些整数叫做“有理整数”。

一个有理整数 n 除以一个高斯整数 P,所得的结果若也为高斯整数,那么,这个高斯整数 P 就被叫做 n 的除数。

比如, p153_formule1.gif 我们可以按下面方式进行化简分子分母分别乘以 1+2i 的共轭数: 1-2i.
结果如下 p153_formule2.gif .

所以,1+2i 是 5 的一个除数。

注意,1+i 不是 5 的除数,因为 p153_formule5.gif .

另外还要注意:如果 (a+bi) 是有理整数 N 的除数,那么它的共轭数  (a-bi) 也是 N 的除数。

实际上,5 有六个除数,它们的实部都为正: {1, 1 + 2i, 1 - 2i, 2 + i, 2 - i, 5}。

下表显示了前五个正有理数具有的除数:

QQ20160831-2@2x.png


由这些实部为正的除数,我们可以得到和为 p153_formule6.gif

对于 1 ≤ n ≤ 105,∑ s(n)=17924657155

请问,对于 1 ≤ n ≤ 108, ∑ s(n) 是多少?

想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2020-5-7 11:42:33 | 显示全部楼层
应用数论中的不定方程x^2+y^2=n的正整数解来解决这个问题。且应用数论中的这个结论:某个正整数是两平方数之和,当且仅当该正整数的所有 4k+3 型素因子的幂次均为偶数。
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2020-8-31 11:43:44 | 显示全部楼层
直接考虑数n在这个范围maxn内可能成为的次数. 反向记录储存.
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2021-4-1 16:32:47 | 显示全部楼层
import time
import math

timeStart = time.time()

n = 10**8

ans = 0

def sumOfDivisor(n:int) -> int:
    ans = 0
    m = int(n**0.5)
    for x in range(1, m+1):
        a = n//(x+1)+1
        b = n//x
        ans += (n//x + (a+b)*(b-a+1)//2) * x
    if m*(m+1) > n:
        ans -= m*m
    return ans

ans = sumOfDivisor(n)
m = int(n**0.5)
dic = {1:1}
for x in range(1, m+1):
    for y in range(1, int((n-x*x)**0.5)+1):
        if math.gcd(x, y) > 1:
            continue
        c = n//(x*x+y*y)
        if c in dic:
            s = dic[c]
        else:
            s = sumOfDivisor(c)
            dic[c] = s
        ans += 2*x*s

print(ans)

print(f'time used: {time.time() - timeStart: .3f} s')
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2025-1-22 21:46

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表