|
|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 zhuangrui_tea 于 2017-12-28 10:02 编辑
这是作者在github的源代码(github源码)
shape_predictor_5_face_landmarks.dat
我的运行环境:OSX10.12.3+python3.5+pycharm
运行代码后提示错误:
Connected to pydev debugger (build 172.4343.24)
Traceback (most recent call last):
File "/Applications/PyCharm.app/Contents/helpers/pydev/pydevd.py", line 1599, in <module>
globals = debugger.run(setup['file'], None, None, is_module)
File "/Applications/PyCharm.app/Contents/helpers/pydev/pydevd.py", line 1026, in run
pydev_imports.execfile(file, globals, locals) # execute the script
File "/Applications/PyCharm.app/Contents/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/Users/zhuangrui/Documents/Python/Python_practice/WeChat_Christmas_Cap.py", line 123, in <module>
output = add_hat(img, hat_img)
File "/Users/zhuangrui/Documents/Python/Python_practice/WeChat_Christmas_Cap.py", line 34, in add_hat
shape = predictor(img, d)
TypeError: 'NoneType' object is not callable
错误是:'NoneType' object is not callable,nonetype不可调用,提示line 34 : shape = predictor(img, d),其中 predictor() 为predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat"),print的结果为none
这个问题如何解决呢?谢谢!
- import dlib
- import numpy
- from skimage import io
- import cv2
- # 给img中的人头像加上圣诞帽,人脸最好为正脸
- def add_hat(img, hat_img):
- # 分离rgba通道,合成rgb三通道帽子图,a通道后面做mask用
- r, g, b, a = cv2.split(hat_img)
- rgb_hat = cv2.merge((r, g, b))
- cv2.imwrite("hat_alpha.jpg", a)
- # ------------------------- 用dlib的人脸检测代替OpenCV的人脸检测-----------------------
- # dlib人脸关键点检测器
- #predictor_path = "shape_predictor_68_face_landmarks.dat"
- #predictor = dlib.shape_predictor(predictor_path)
- predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
- # dlib正脸检测器
- detector = dlib.get_frontal_face_detector()
- # 正脸检测
- dets = detector(img, 1)
- # 如果检测到人脸
- if len(dets) > 0:
- for d in dets:
- x, y, w, h = d.left(), d.top(), d.right() - d.left(), d.bottom() - d.top()
- # x,y,w,h = faceRect
- # cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2,8,0)
- # 关键点检测,5个关键点
- shape = predictor(img, d)
- # for point in shape.parts():
- # cv2.circle(img,(point.x,point.y),3,color=(0,255,0))
- # cv2.imshow("image",img)
- # cv2.waitKey()
- # 选取左右眼眼角的点
- point1 = shape.part(0)
- point2 = shape.part(2)
- # 求两点中心
- eyes_center = ((point1.x + point2.x) // 2, (point1.y + point2.y) // 2)
- # cv2.circle(img,eyes_center,3,color=(0,255,0))
- # cv2.imshow("image",img)
- # cv2.waitKey()
- # 根据人脸大小调整帽子大小
- factor = 1.5
- resized_hat_h = int(round(rgb_hat.shape[0] * w / rgb_hat.shape[1] * factor))
- resized_hat_w = int(round(rgb_hat.shape[1] * w / rgb_hat.shape[1] * factor))
- if resized_hat_h > y:
- resized_hat_h = y - 1
- # 根据人脸大小调整帽子大小
- resized_hat = cv2.resize(rgb_hat, (resized_hat_w, resized_hat_h))
- # 用alpha通道作为mask
- mask = cv2.resize(a, (resized_hat_w, resized_hat_h))
- mask_inv = cv2.bitwise_not(mask)
- # 帽子相对与人脸框上线的偏移量
- dh = 0
- dw = 0
- # 原图ROI
- # bg_roi = img[y+dh-resized_hat_h:y+dh, x+dw:x+dw+resized_hat_w]
- bg_roi = img[y + dh - resized_hat_h:y + dh,
- (eyes_center[0] - resized_hat_w // 3):(eyes_center[0] + resized_hat_w // 3 * 2)]
- # 原图ROI中提取放帽子的区域
- bg_roi = bg_roi.astype(float)
- mask_inv = cv2.merge((mask_inv, mask_inv, mask_inv))
- alpha = mask_inv.astype(float) / 255
- # 相乘之前保证两者大小一致(可能会由于四舍五入原因不一致)
- alpha = cv2.resize(alpha, (bg_roi.shape[1], bg_roi.shape[0]))
- # print("alpha size: ",alpha.shape)
- # print("bg_roi size: ",bg_roi.shape)
- bg = cv2.multiply(alpha, bg_roi)
- bg = bg.astype('uint8')
- cv2.imwrite("bg.jpg", bg)
- # cv2.imshow("image",img)
- # cv2.waitKey()
- # 提取帽子区域
- hat = cv2.bitwise_and(resized_hat, resized_hat, mask=mask)
- cv2.imwrite("hat.jpg", hat)
- # cv2.imshow("hat",hat)
- # cv2.imshow("bg",bg)
- # print("bg size: ",bg.shape)
- # print("hat size: ",hat.shape)
- # 相加之前保证两者大小一致(可能会由于四舍五入原因不一致)
- hat = cv2.resize(hat, (bg_roi.shape[1], bg_roi.shape[0]))
- # 两个ROI区域相加
- add_hat = cv2.add(bg, hat)
- # cv2.imshow("add_hat",add_hat)
- # 把添加好帽子的区域放回原图
- img[y + dh - resized_hat_h:y + dh,
- (eyes_center[0] - resized_hat_w // 3):(eyes_center[0] + resized_hat_w // 3 * 2)] = add_hat
- # 展示效果
- # cv2.imshow("img",img )
- # cv2.waitKey(0)
- return img
- # 读取帽子图,第二个参数-1表示读取为rgba通道,否则为rgb通道
- hat_img = cv2.imread("hat2.png", -1)
- # 读取头像图
- img = cv2.imread("test.jpg")
- output = add_hat(img, hat_img)
- # 展示效果
- cv2.imshow("output", output)
- cv2.waitKey(0)
- cv2.imwrite("output.jpg", output)
- # import glob as gb
- # img_path = gb.glob("./images/*.jpg")
- # for path in img_path:
- # img = cv2.imread(path)
- # # 添加帽子
- # output = add_hat(img,hat_img)
- # # 展示效果
- # cv2.imshow("output",output )
- # cv2.waitKey(0)
- cv2.destroyAllWindows()
复制代码 |
|