|
|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
- import tensorflow as tf
- import os
- import random
- import math
- import sys
- from PIL import Image
- import numpy as np
- # 验证集数量
- _NUM_TEST = 500
- # 随机种子
- _RANDOM_SEED = 0
- # 数据集路径
- DATASET_DIR = "F:/holiday_study/tensorflow_1/class3-2/mnist/mnist/captcha/images"
- # tfrecord文件存放路径
- TFRECORD_DIR = "F:/holiday_study/tensorflow_1/class3-2/mnist/mnist/captcha/"
- # 判断tfrecord文件是不是存在
- def _dataset_exists(dataset_dir):
- for split_name in ['train', 'test']:
- output_filename = os.path.join(dataset_dir, split_name + '.tfrecords')
- if not tf.gfile.Exists(output_filename):
- return False
- return True
- # 获取所有的验证码图片
- def _get_filenames_and_classes(dataset_dir):
- photo_filenames = []
- for filename in os.listdir(dataset_dir):
- path = os.path.join(dataset_dir, filename)
- photo_filenames.append(path)
- return photo_filenames
- def int64_feature(values):
- if not isinstance(values, (tuple, list)):
- values = [values]
- return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
- def bytes_feature(values):
- return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
- def image_to_tfexample(image_data, label0, label1, label2, label3):
- return tf.train.Example(features=tf.train.Features(feature={
- 'image': bytes_feature(image_data),
- 'label0': int64_feature(label0),
- 'label1': int64_feature(label1),
- 'label2': int64_feature(label2),
- 'label3': int64_feature(label3),
- }))
- # 把数据转为tfrecord格式
- def _convert_dataset(split_name, filenames, dataset_dir):
- assert split_name in ['train', 'test']
- with tf.Session() as sess:
- # 定义tfrecord文件的路径和名字
- output_filename = os.path.join(TFRECORD_DIR, split_name + '.tfrecords')
- with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
- for i,filename in enumerate(filenames):
- try:
- sys.stdout.write('\r>> Converting image %d/%d' % (i+1, len(filenames)))
- sys.stdout.flush()
- # 读取照片
- image_data = Image.open(filename)
- # 根据模型的结构resize
- image_data = image_data.resize((224, 224))
- # 灰度化
- image_data = np.array(image_data.convert('L'))
- image_data = image_data.tobytes()
- # 获取labels
- labels = filename.split('/')[-1][0:4]
- num_labels = []
- for j in range(4):
- num_labels.append(labels[j])
- # 生成protocol数据类型
- example = image_to_tfexample(image_data, num_labels[0], num_labels[1], num_labels[2], num_labels[3])
- tfrecord_writer.write(example.SerializeToString())
- except IOError as e:
- print('could not read: ', filename)
- print('error: ', e)
- print('skip it \n')
- sys.stdout.write('\n')
- if _dataset_exists(TFRECORD_DIR):
- print("wenjiancunzai")
- else:
- # 获取所有的图片
- photo_filenames = _get_filenames_and_classes(DATASET_DIR)
- # 把数据切分为训练集和测试机斌打乱
- random.seed(_RANDOM_SEED)
- random.shuffle(photo_filenames)
- training_filenames = photo_filenames[_NUM_TEST:]
- testing_filenames = photo_filenames[:_NUM_TEST]
- # 数据转化
- _convert_dataset('train', training_filenames, DATASET_DIR)
- _convert_dataset('test', testing_filenames, DATASET_DIR)
- print('生成tfrecord文件')
复制代码
报错
- Converting image 1/3448Traceback (most recent call last):
- File "F:/holiday_study/tensorflow_1/class3-2/mnist/mnist/class9-2nsdn.py", line 111, in <module>
- _convert_dataset('train', training_filenames, DATASET_DIR)
- File "F:/holiday_study/tensorflow_1/class3-2/mnist/mnist/class9-2nsdn.py", line 85, in _convert_dataset
- example = image_to_tfexample(image_data, num_labels[0], num_labels[1], num_labels[2], num_labels[3])
- File "F:/holiday_study/tensorflow_1/class3-2/mnist/mnist/class9-2nsdn.py", line 50, in image_to_tfexample
- 'label0': int64_feature(label0),
- File "F:/holiday_study/tensorflow_1/class3-2/mnist/mnist/class9-2nsdn.py", line 40, in int64_feature
- return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
- TypeError: 'i' has type str, but expected one of: int, long
复制代码
查了一些解决方法还是没解决。。。。求助各位大佬 |
|