|  | 
 
| 
关于网站程序运行出现的错误,请求指导更改,保证其可以正常运行:
x
马上注册,结交更多好友,享用更多功能^_^您需要 登录 才可以下载或查看,没有账号?立即注册  #!/usr/bin/python
 # -*- coding:UTF-8 -*-
 
 # 导入需要的包
 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import operator
 from sklearn import datasets, linear_model
 from sklearn.linear_model import LogisticRegression
 
 # 读取文件
 df = pd.read_table('newdata.txt', header=None, sep=',')
 
 # 读取日期
 tdate = sorted(df.loc[:, 0])
 
 
 # 将以列项为数据,将球号码取出,写入到csv文件中,并取50行数据
 # Function to red number to csv file
 def RedToCsv(h_num, num, csv_name):
 h_num = df.loc[:, num:num].values
 h_num = h_num[50::-1]
 renum2 = pd.DataFrame(h_num)
 renum2.to_csv(csv_name, header=None)
 fp = file(csv_name)
 s = fp.read()
 fp.close()
 a = s.split('\n')
 a.insert(0, 'numid,number')
 s = '\n'.join(a)
 fp = file(csv_name, 'w')
 fp.write(s)
 fp.close()
 
 
 # 调用取号码函数
 # create file
 RedToCsv('red1', 1, 'rednum1data.csv')
 RedToCsv('red2', 2, 'rednum2data.csv')
 RedToCsv('red3', 3, 'rednum3data.csv')
 RedToCsv('red4', 4, 'rednum4data.csv')
 RedToCsv('red5', 5, 'rednum5data.csv')
 RedToCsv('red6', 6, 'rednum6data.csv')
 RedToCsv('blue1', 7, 'bluenumdata.csv')
 
 
 # 获取数据,X_parameter为numid数据,Y_parameter为number数据
 # Function to get data
 def get_data(file_name):
 data = pd.read_csv(file_name)
 X_parameter = []
 Y_parameter = []
 for single_square_feet, single_price_value in zip(data['numid'], data['number']):
 X_parameter.append([float(single_square_feet)])
 Y_parameter.append(float(single_price_value))
 return X_parameter, Y_parameter
 
 
 # 训练线性模型
 # Function for Fitting our data to Linear model
 def linear_model_main(X_parameters, Y_parameters, predict_value):
 # Create linear regression object
 regr = linear_model.LinearRegression()
 # regr = LogisticRegression()
 regr.fit(X_parameters, Y_parameters)
 predict_outcome = regr.predict(predict_value)
 predictions = {}
 predictions['intercept'] = regr.intercept_
 predictions['coefficient'] = regr.coef_
 predictions['predicted_value'] = predict_outcome
 return predictions
 
 
 # 获取预测结果函数
 def get_predicted_num(inputfile, num):
 X, Y = get_data(inputfile)
 predictvalue = 51
 result = linear_model_main(X, Y, predictvalue)
 print
 "num " + str(num) + " Intercept value ", result['intercept']
 print
 "num " + str(num) + " coefficient", result['coefficient']
 print
 "num " + str(num) + " Predicted value: ", result['predicted_value']
 
 
 # 调用函数分别预测红球、蓝球
 get_predicted_num('rednum1data.csv', 1)
 get_predicted_num('rednum2data.csv', 2)
 get_predicted_num('rednum3data.csv', 3)
 get_predicted_num('rednum4data.csv', 4)
 get_predicted_num('rednum5data.csv', 5)
 get_predicted_num('rednum6data.csv', 6)
 
 get_predicted_num('bluenumdata.csv', 1)
 
 
 # 获取X,Y数据预测结果
 # X,Y = get_data('rednum1data.csv')
 # predictvalue = 21
 # result = linear_model_main(X,Y,predictvalue)
 # print "red num 1 Intercept value " , result['intercept']
 # print "red num 1 coefficient" , result['coefficient']
 # print "red num 1 Predicted value: ",result['predicted_value']
 
 
 # Function to show the resutls of linear fit model
 def show_linear_line(X_parameters, Y_parameters):
 # Create linear regression object
 regr = linear_model.LinearRegression()
 # regr = LogisticRegression()
 regr.fit(X_parameters, Y_parameters)
 plt.figure(figsize=(12, 6), dpi=80)
 plt.legend(loc='best')
 plt.scatter(X_parameters, Y_parameters, color='blue')
 plt.plot(X_parameters, regr.predict(X_parameters), color='red', linewidth=4)
 plt.xticks(())
 plt.yticks(())
 plt.show()
 
 出现的错误提示如下:
 Traceback (most recent call last):
 File "E:/Pycharm/每日一题测试.py", line 13, in <module>
 df = pd.read_table('newdata.txt', header=None, sep=',')
 File "D:\python\lib\site-packages\pandas\io\parsers.py", line 685, in parser_f
 return _read(filepath_or_buffer, kwds)
 File "D:\python\lib\site-packages\pandas\io\parsers.py", line 457, in _read
 parser = TextFileReader(fp_or_buf, **kwds)
 File "D:\python\lib\site-packages\pandas\io\parsers.py", line 895, in __init__
 self._make_engine(self.engine)
 File "D:\python\lib\site-packages\pandas\io\parsers.py", line 1135, in _make_engine
 self._engine = CParserWrapper(self.f, **self.options)
 File "D:\python\lib\site-packages\pandas\io\parsers.py", line 1917, in __init__
 self._reader = parsers.TextReader(src, **kwds)
 File "pandas/_libs/parsers.pyx", line 382, in pandas._libs.parsers.TextReader.__cinit__
 File "pandas/_libs/parsers.pyx", line 689, in pandas._libs.parsers.TextReader._setup_parser_source
 FileNotFoundError: [Errno 2] File b'newdata.txt' does not exist: b'newdata.txt'
 | 
 |