鱼C论坛

 找回密码
 立即注册
查看: 1906|回复: 6

[已解决]有关信用卡欺诈的那个例子

[复制链接]
发表于 2019-12-11 16:23:57 | 显示全部楼层 |阅读模式
30鱼币

附件那边上传大小必须2m以下,我就只取了csv前面几行数据

代码是这样写的:

#信用卡欺诈检测
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
#%matplotlib inline 魔法方法ipython中用
data = pd.read_csv(r"D:\储存\学习\唐宇迪python\01、python数据分析与机器学习实战\课程资料\唐宇迪-机器学习课程资料\机器学习算法配套案例实战\逻辑回归-信用卡欺诈检测\creditcard.csv")
count_classes = pd.value_counts(data['Class'], sort = True).sort_index()
count_classes.plot(kind = 'bar')                #建立柱状图
plt.title("Fraud class histogram")
plt.xlabel("Class")
plt.ylabel("Frequency")

from sklearn.preprocessing import StandardScaler

data['normAmount'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1, 1))
data = data.drop(['Time','Amount'],axis=1)

X = data.ix[:, data.columns != 'Class']
y = data.ix[:, data.columns == 'Class']

number_records_fraud = len(data[data.Class == 1])
fraud_indices = np.array(data[data.Class == 1].index)


normal_indices = data[data.Class == 0].index

random_normal_indices = np.random.choice(normal_indices, number_records_fraud, replace = False)
random_normal_indices = np.array(random_normal_indices)

under_sample_indices = np.concatenate([fraud_indices,random_normal_indices])

under_sample_data = data.iloc[under_sample_indices,:]

X_undersample = under_sample_data.ix[:, under_sample_data.columns != 'Class']
y_undersample = under_sample_data.ix[:, under_sample_data.columns == 'Class']
# Showing ratio
print("Percentage of normal transactions: ", len(under_sample_data[under_sample_data.Class == 0])/len(under_sample_data))
print("Percentage of fraud transactions: ", len(under_sample_data[under_sample_data.Class == 1])/len(under_sample_data))
print("Total number of transactions in resampled data: ", len(under_sample_data))

from sklearn.model_selection import train_test_split


X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)


print("Number transactions train dataset: ", len(X_train))
print("Number transactions test dataset: ", len(X_test))
print("Total number of transactions: ", len(X_train)+len(X_test))

# 下采样
X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = train_test_split(X_undersample,y_undersample,test_size = 0.3,random_state = 0)
print("")
print("Number transactions train dataset: ", len(X_train_undersample))
print("Number transactions test dataset: ", len(X_test_undersample))
print("Total number of transactions: ", len(X_train_undersample)+len(X_test_undersample))

#Recall = TP/(TP+FN)
from sklearn.linear_model import LogisticRegression                                
from sklearn.model_selection import KFold                                         
from sklearn.model_selection import cross_val_score                                
from sklearn.metrics import confusion_matrix,recall_score,classification_report    

#交叉验证
def printing_Kfold_scores(x_train_data,y_train_data):

    fold = KFold(5,shuffle=False)             
#    fold.get_n_splits(len(y_train_data))    
    
    # 定义不同正则化惩罚力度
    c_param_range = [0.01,0.1,1,10,100]

    #可视化显示
    results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score'])
    results_table['C_parameter'] = c_param_range

    # the k-fold will give 2 lists: train_indices = indices[0], test_indices = indices[1]
    j = 0
    for c_param in c_param_range:
        print('-------------------------------------------')
        print('C parameter: ', c_param)
        print('-------------------------------------------')
        print('')

        recall_accs = []
        for iteration, indices in fold.split(X):    
            lr = LogisticRegression(C = c_param, penalty = 'l1')

            # Use the training data to fit the model. In this case, we use the portion of the fold to train the model
            # with indices[0]. We then predict on the portion assigned as the 'test cross validation' with indices[1]
            lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())

            # Predict values using the test indices in the training data
            y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values)

            # Calculate the recall score and append it to a list for recall scores representing the current c_parameter
            recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample)
            recall_accs.append(recall_acc)
            print('Iteration ', iteration,': recall score = ', recall_acc)

        # The mean value of those recall scores is the metric we want to save and get hold of.
        results_table.ix[j,'Mean recall score'] = np.mean(recall_accs)
        j += 1
        print('')
        print('Mean recall score ', np.mean(recall_accs))
        print('')

    best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter']
    
    # Finally, we can check which C parameter is the best amongst the chosen.
    print('*********************************************************************************')
    print('Best model to choose from cross validation is with C parameter = ', best_c)
    print('*********************************************************************************')
    
    return best_c

best_c = printing_Kfold_scores(X_train_undersample,y_train_undersample)

===========================================================================================

结果就返回错误:
ValueError: Expected 2D array, got 1D array instead:
array=[-1.86375555  3.44264398 -4.46825973  2.80533626 -2.11841248 -2.33228489
-4.2612372   1.70168184 -1.43939588 -6.99990663  6.31620968 -8.670818
  0.31602399 -7.41771206 -0.43653747 -3.65280196 -6.29314532 -1.24324829
  0.36481048  0.360924    0.66792657 -0.51624236 -0.01221781  0.0706137
  0.05850447  0.30488284  0.41801247  0.20885828 -0.34923131].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.

是这行有什么问题嘛?辛苦各位大神帮忙看看啦~
lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())
最佳答案
2019-12-11 16:23:58
维度不对,期待的是二维矩阵,而且都提示将其reshape下就行,至于哪个维度该是1,你自己跑的应该更明白

creditcard.zip

1.07 MB, 下载次数: 1

最佳答案

查看完整内容

维度不对,期待的是二维矩阵,而且都提示将其reshape下就行,至于哪个维度该是1,你自己跑的应该更明白
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2019-12-11 16:23:58 | 显示全部楼层    本楼为最佳答案   
维度不对,期待的是二维矩阵,而且都提示将其reshape下就行,至于哪个维度该是1,你自己跑的应该更明白
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

 楼主| 发表于 2019-12-11 21:35:23 | 显示全部楼层
塔利班 发表于 2019-12-11 16:36
维度不对,期待的是二维矩阵,而且都提示将其reshape下就行,至于哪个维度该是1,你自己跑的应该更明白

加了个冒号,维度应该没问题了,可是又提示
ValueError: Found array with 0 sample(s) (shape=(0, 29)) while a minimum of 1 is required.
这又是怎么回事呢?
我查了下如果加填个print(y_train_data.iloc[indices[0]:,:].values.ravel())
他只有第一次有数据,后面循环得到的全都是[]
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2019-12-11 21:44:46 | 显示全部楼层
Astray.R 发表于 2019-12-11 21:35
加了个冒号,维度应该没问题了,可是又提示
ValueError: Found array with 0 sample(s) (shape=(0, 29)) ...

没时间跑你的数据,你把numpy数组搞明白就行,还有你的indices也搞明白
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

 楼主| 发表于 2019-12-11 23:20:41 | 显示全部楼层
解决办法:
for iteration, indices in fold.split(X)改成
for iteration, indices in enumerate(fold.split(x_train_data), start=1)
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2021-3-16 19:29:10 | 显示全部楼层
X = data.ix[:, data.columns != 'Class']
y = data.ix[:, data.columns == 'Class']
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2021-3-16 19:29:41 | 显示全部楼层
X = data.ix[:, data.columns != 'Class']
y = data.ix[:, data.columns == 'Class']
这两段代码该怎么理解呢
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2025-1-16 07:47

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表