|
30鱼币
附件那边上传大小必须2m以下,我就只取了csv前面几行数据
代码是这样写的:
- #信用卡欺诈检测
- import pandas as pd
- import matplotlib.pyplot as plt
- import numpy as np
- #%matplotlib inline 魔法方法ipython中用
- data = pd.read_csv(r"D:\储存\学习\唐宇迪python\01、python数据分析与机器学习实战\课程资料\唐宇迪-机器学习课程资料\机器学习算法配套案例实战\逻辑回归-信用卡欺诈检测\creditcard.csv")
- count_classes = pd.value_counts(data['Class'], sort = True).sort_index()
- count_classes.plot(kind = 'bar') #建立柱状图
- plt.title("Fraud class histogram")
- plt.xlabel("Class")
- plt.ylabel("Frequency")
- from sklearn.preprocessing import StandardScaler
- data['normAmount'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1, 1))
- data = data.drop(['Time','Amount'],axis=1)
- X = data.ix[:, data.columns != 'Class']
- y = data.ix[:, data.columns == 'Class']
- number_records_fraud = len(data[data.Class == 1])
- fraud_indices = np.array(data[data.Class == 1].index)
- normal_indices = data[data.Class == 0].index
- random_normal_indices = np.random.choice(normal_indices, number_records_fraud, replace = False)
- random_normal_indices = np.array(random_normal_indices)
- under_sample_indices = np.concatenate([fraud_indices,random_normal_indices])
- under_sample_data = data.iloc[under_sample_indices,:]
- X_undersample = under_sample_data.ix[:, under_sample_data.columns != 'Class']
- y_undersample = under_sample_data.ix[:, under_sample_data.columns == 'Class']
- # Showing ratio
- print("Percentage of normal transactions: ", len(under_sample_data[under_sample_data.Class == 0])/len(under_sample_data))
- print("Percentage of fraud transactions: ", len(under_sample_data[under_sample_data.Class == 1])/len(under_sample_data))
- print("Total number of transactions in resampled data: ", len(under_sample_data))
- from sklearn.model_selection import train_test_split
- X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)
- print("Number transactions train dataset: ", len(X_train))
- print("Number transactions test dataset: ", len(X_test))
- print("Total number of transactions: ", len(X_train)+len(X_test))
- # 下采样
- X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = train_test_split(X_undersample,y_undersample,test_size = 0.3,random_state = 0)
- print("")
- print("Number transactions train dataset: ", len(X_train_undersample))
- print("Number transactions test dataset: ", len(X_test_undersample))
- print("Total number of transactions: ", len(X_train_undersample)+len(X_test_undersample))
- #Recall = TP/(TP+FN)
- from sklearn.linear_model import LogisticRegression
- from sklearn.model_selection import KFold
- from sklearn.model_selection import cross_val_score
- from sklearn.metrics import confusion_matrix,recall_score,classification_report
- #交叉验证
- def printing_Kfold_scores(x_train_data,y_train_data):
- fold = KFold(5,shuffle=False)
- # fold.get_n_splits(len(y_train_data))
-
- # 定义不同正则化惩罚力度
- c_param_range = [0.01,0.1,1,10,100]
- #可视化显示
- results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score'])
- results_table['C_parameter'] = c_param_range
- # the k-fold will give 2 lists: train_indices = indices[0], test_indices = indices[1]
- j = 0
- for c_param in c_param_range:
- print('-------------------------------------------')
- print('C parameter: ', c_param)
- print('-------------------------------------------')
- print('')
- recall_accs = []
- for iteration, indices in fold.split(X):
- lr = LogisticRegression(C = c_param, penalty = 'l1')
- # Use the training data to fit the model. In this case, we use the portion of the fold to train the model
- # with indices[0]. We then predict on the portion assigned as the 'test cross validation' with indices[1]
- lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())
- # Predict values using the test indices in the training data
- y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values)
- # Calculate the recall score and append it to a list for recall scores representing the current c_parameter
- recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample)
- recall_accs.append(recall_acc)
- print('Iteration ', iteration,': recall score = ', recall_acc)
- # The mean value of those recall scores is the metric we want to save and get hold of.
- results_table.ix[j,'Mean recall score'] = np.mean(recall_accs)
- j += 1
- print('')
- print('Mean recall score ', np.mean(recall_accs))
- print('')
- best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter']
-
- # Finally, we can check which C parameter is the best amongst the chosen.
- print('*********************************************************************************')
- print('Best model to choose from cross validation is with C parameter = ', best_c)
- print('*********************************************************************************')
-
- return best_c
- best_c = printing_Kfold_scores(X_train_undersample,y_train_undersample)
复制代码
===========================================================================================
结果就返回错误:
ValueError: Expected 2D array, got 1D array instead:
array=[-1.86375555 3.44264398 -4.46825973 2.80533626 -2.11841248 -2.33228489
-4.2612372 1.70168184 -1.43939588 -6.99990663 6.31620968 -8.670818
0.31602399 -7.41771206 -0.43653747 -3.65280196 -6.29314532 -1.24324829
0.36481048 0.360924 0.66792657 -0.51624236 -0.01221781 0.0706137
0.05850447 0.30488284 0.41801247 0.20885828 -0.34923131].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
是这行有什么问题嘛?辛苦各位大神帮忙看看啦~
lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())
维度不对,期待的是二维矩阵,而且都提示将其reshape下就行,至于哪个维度该是1,你自己跑的应该更明白
|
最佳答案
查看完整内容
维度不对,期待的是二维矩阵,而且都提示将其reshape下就行,至于哪个维度该是1,你自己跑的应该更明白
|