|

楼主 |
发表于 2020-3-10 12:07:12
|
显示全部楼层
我又搞了另外一段代码,原先里面也有那个当前无法在3D轴上手动设置长宽比的语句,后来我把那条语句去掉了,结果仿真出来的图可以正常运行:
- import numpy as np
- import matplotlib as mpl
- mpl.use("TkAgg")
- from matplotlib import pyplot as plt
- from mpl_toolkits.mplot3d import Axes3D
- import matplotlib.animation as animmation
- r1 = 10 #地球环绕轨迹的半径
- r2 = 1 #月球环绕轨迹的半径
- omega1 = 2 * np.pi #地球运动的角速度
- omega2 = 24 * np.pi #地球自转速度
- phi = 5.1454 * np.pi / 180 #地球自转轴角
- def update(data): #随时间t变换设置新的地球位置的坐标,也即是随animmation.FuncAnimation函数的帧数参数变化每一帧的不同坐标位置的图片对象参数
- global line1, line2 , line3
- line1.set_data([data[0], data[1]])
- line1.set_3d_properties(data[2])
- line2.set_data([data[3], data[4]])
- line2.set_3d_properties(data[5])
- line3.set_data([data[6], data[7]])
- line3.set_3d_properties(data[8])
- return line1,line2,line3,
- def init(): #地球的起始位置
- global line1, line2, line3
- ti = 0
- t = t_drange[np.mod(ti, t_dlen)]
- xt1 = x0 + r1 * np.cos(omega1 * t)
- yt1 = y0 + r1 * np.sin(omega1 * t)
- zt1 = z0 + 0
- xt2 = xt1 + r2 * np.sin(omega2 * t)
- yt2 = yt1 + r2 * np.cos(omega2 * t)/(np.cos(phi) * (1 + np.tan(phi) ** 2))
- zt2 = zt1 + (yt2 - yt1) * np.tan(phi)
- xt21 = xt1 + r2 * np.sin(2 * np.pi * t_range)
- yt21 = yt1 + r2 * np.cos(2 * np.pi * t_range)/(np.cos(phi) * (1 + np.tan(phi) ** 2))
- zt21 = zt1 + (yt21 - yt1) * np.tan(phi)
- line1, = ax.plot([xt1], [yt1], [zt1], marker='o', color='blue',markersize=8)
- line2, = ax.plot([xt2], [yt2], [zt2], marker='o', color='orange',markersize=4)
- line3, = ax.plot(xt21, yt21, zt21, color='purple')
- return line1,line2,line3
- def data_gen(): #随时间t变换的地球和月球坐标,也即是animmation.FuncAnimation函数的帧数参数
- global x0,y0,z0,t_dlen
- data = []
- for ti in range(1,t_dlen):
- t = t_drange[ti]
- xt1 = x0 + r1 * np.cos(omega1 * t)
- yt1 = y0 + r1 * np.sin(omega1 * t)
- zt1 = z0
- xt2 = xt1 + r2 * np.sin(omega2 * t)
- yt2 = yt1 + r2 * np.cos(omega2 * t)/(np.cos(phi) * (1 + np.tan(phi) ** 2))
- zt2 = zt1 + (yt2 - yt1) * np.tan(phi)
- xt21 = xt1 + r2 * np.sin(2 * np.pi * t_range)
- yt21 = yt1 + r2 * np.cos(2 * np.pi * t_range)/(np.cos(phi) * (1 + np.tan(phi) ** 2))
- zt21 = zt1 + (yt21 - yt1) * np.tan(phi)
- data.append([xt1, yt1, zt1, xt2, yt2, zt2, xt21, yt21, zt21])
- return data
- t_range = np.arange(0, 1 + 0.005, 0.005) #设置环绕一周时间的范围以及运动间隔时间
- t_drange = np.arange(0, 1, 0.005 )
- t_len = len(t_range)
- t_dlen = len(t_drange)
- #sun's coordination
- x0 = 0
- y0 = 0
- z0 = 0
- #地球轨道
- x1 = x0 + r1 * np.cos(omega1 * t_range)
- y1 = y0 + r1 * np.sin(omega1 * t_range)
- z1 = z0 + np.zeros(t_len)
- #月球轨道
- x2 = x1 + r2 * np.sin(omega2 * t_range)
- y2 = y1 + r2 * np.cos(omega2 * t_range)/(np.cos(phi) * (1 + np.tan(phi) ** 2))
- z2 = z1 + (y2 - y1) * np.tan(phi)
- f = plt.figure(figsize=(6,6)) #绘图的画布
- ax = f.add_subplot(111,projection='3d') #设置3d坐标系
- ax.set_title("Sun-Earth-Moon Model") #设置图像标题(太阳-地球-月亮转动模型)
- ax.plot([0], [0], [0], marker='o', color= 'red', markersize=16) #绘制太阳的各种属性
- ax.plot(x1, y1, z1, 'r') #绘制地球图像
- ax.plot(x2, y2, z2, 'b') #绘制月球图像
- ax.set_xlim([-(r1 + 2), (r1 + 2)]) #太阳用动模型在坐标系中的范围
- ax.set_ylim([-(r1 + 2), (r1 + 2)]) #地球用动模型在坐标系中的范围
- ax.set_zlim([-5, 5]) #月球用动模型在坐标系中的范围
- #红色球体代表太阳,蓝色球体代表地球,橙色球体代表月亮
- line1, = ax.plot([], [], [], marker='o', color='blue',markersize=8,animated = True)
- line2, = ax.plot([], [], [], marker='o', color='orange',markersize=4,animated = True)
- line3, = ax.plot([], [], [], color='purple',animated = True)
- # 将上述函数对象传如animmation.FuncAnimation函数以生成连读的地球运动模型
- ani = animmation.FuncAnimation(f, update, frames = data_gen(), init_func = init,interval = 20)
- plt.show()
复制代码 |
|