from tkinter import *
from tkinter import messagebox
import os
import tkinter as tk
#def Introduction(): # 定义简介
def Simulation(): # 定义模拟仿真函数
import numpy as np
import matplotlib as mpl
mpl.use("TkAgg")
from matplotlib import pyplot as plt
import matplotlib.animation as animmation
r1 = 10 # 地球环绕轨迹的半径
r2 = 1 # 月球环绕轨迹的半径
omega1 = 2 * np.pi # 地球运动的角速度
omega2 = 24 * np.pi # 地球自转速度
phi = 5.1454 * np.pi / 180 # 地球自转轴角
def update(data):
# 随时间t变换设置新的地球位置的坐标,也即是随animmation.FuncAnimation函数的帧数参数变化每一帧的不同坐标位置的图片对象参数
global line1, line2, line3
line1.set_data([data[0], data[1]])
line1.set_3d_properties(data[2])
line2.set_data([data[3], data[4]])
line2.set_3d_properties(data[5])
line3.set_data([data[6], data[7]])
line3.set_3d_properties(data[8])
return line1, line2, line3,
def init(): # 地球的起始位置
global line1, line2, line3
ti = 0
t = t_drange[np.mod(ti, t_dlen)]
xt1 = x0 + r1 * np.cos(omega1 * t)
yt1 = y0 + r1 * np.sin(omega1 * t)
zt1 = z0 + 0
xt2 = xt1 + r2 * np.sin(omega2 * t)
yt2 = yt1 + r2 * np.cos(omega2 * t) / (np.cos(phi) * (1 + np.tan(phi) ** 2))
zt2 = zt1 + (yt2 - yt1) * np.tan(phi)
xt21 = xt1 + r2 * np.sin(2 * np.pi * t_range)
yt21 = yt1 + r2 * np.cos(2 * np.pi * t_range) / (np.cos(phi) * (1 + np.tan(phi) ** 2))
zt21 = zt1 + (yt21 - yt1) * np.tan(phi)
line1, = ax.plot([xt1], [yt1], [zt1], marker='o', color='blue', markersize=8)
line2, = ax.plot([xt2], [yt2], [zt2], marker='o', color='orange', markersize=4)
line3, = ax.plot(xt21, yt21, zt21, color='purple')
return line1, line2, line3
def data_gen(): # 随时间t变换的地球和月球坐标,也即是animmation.FuncAnimation函数的帧数参数
global x0, y0, z0, t_dlen
data = []
for ti in range(1, t_dlen):
t = t_drange[ti]
xt1 = x0 + r1 * np.cos(omega1 * t)
yt1 = y0 + r1 * np.sin(omega1 * t)
zt1 = z0
xt2 = xt1 + r2 * np.sin(omega2 * t)
yt2 = yt1 + r2 * np.cos(omega2 * t) / (np.cos(phi) * (1 + np.tan(phi) ** 2))
zt2 = zt1 + (yt2 - yt1) * np.tan(phi)
xt21 = xt1 + r2 * np.sin(2 * np.pi * t_range)
yt21 = yt1 + r2 * np.cos(2 * np.pi * t_range) / (np.cos(phi) * (1 + np.tan(phi) ** 2))
zt21 = zt1 + (yt21 - yt1) * np.tan(phi)
data.append([xt1, yt1, zt1, xt2, yt2, zt2, xt21, yt21, zt21])
return data
t_range = np.arange(0, 1 + 0.005, 0.005) # 设置环绕一周时间的范围以及运动间隔时间
t_drange = np.arange(0, 1, 0.005)
t_len = len(t_range)
t_dlen = len(t_drange)
# sun's coordination
x0 = 0
y0 = 0
z0 = 0
# 地球轨道
x1 = x0 + r1 * np.cos(omega1 * t_range)
y1 = y0 + r1 * np.sin(omega1 * t_range)
z1 = z0 + np.zeros(t_len)
# 月球轨道
x2 = x1 + r2 * np.sin(omega2 * t_range)
y2 = y1 + r2 * np.cos(omega2 * t_range) / (np.cos(phi) * (1 + np.tan(phi) ** 2))
z2 = z1 + (y2 - y1) * np.tan(phi)
f = plt.figure(figsize=(6, 6)) # 绘图的画布
ax = f.add_subplot(111, projection='3d') # 设置3d坐标系
ax.set_title("Sun-Earth-Moon Model") # 设置图像标题(太阳-地球-月亮转动模型)
ax.plot([0], [0], [0], marker='o', color='red', markersize=16) # 绘制太阳的各种属性
ax.plot(x1, y1, z1, 'r') # 绘制地球图像
ax.plot(x2, y2, z2, 'b') # 绘制月球图像
ax.set_xlim([-(r1 + 2), (r1 + 2)]) # 太阳用动模型在坐标系中的范围
ax.set_ylim([-(r1 + 2), (r1 + 2)]) # 地球用动模型在坐标系中的范围
ax.set_zlim([-5, 5]) # 月球用动模型在坐标系中的范围
# 红色球体代表太阳,蓝色球体代表地球,橙色球体代表月亮
line1, = ax.plot([], [], [], marker='o', color='blue', markersize=8, animated=True)
line2, = ax.plot([], [], [], marker='o', color='orange', markersize=4, animated=True)
line3, = ax.plot([], [], [], color='purple', animated=True)
# 将上述函数对象传如animmation.FuncAnimation函数以生成连读的地球运动模型
ani = animmation.FuncAnimation(f, update, frames=data_gen(), init_func=init, interval=20)
plt.show()
#def Exercise(): # 定义演习函数
#def Assessment(): #定义考核函数
# 创建窗口
app = Tk()
# 定义窗口标题
app.title("用Tkinter模块创建软件框架")
# 设置长宽 这里的x是小写的,有点类似于乘号 宽 x 高
app.geometry("800x800")
# 定义窗口内容为theLabel
theLabel = Label(app, text="毕设草稿:气象部门工作方案", font="楷体 15", fg="green")
# grid就是定位,网格式布局
theLabel.grid()
# 添加按钮
# command 是点击按钮之后触发的事件
button1 = Button(app, text="内容介绍", width=10, height=3)
button1.grid(row=8, column=0, sticky=E)
button2 = Button(app, text="仿真模型", width=10, height=3,command=Simulation)
button2.grid(row=10, column=0, sticky=E)
button3 = Button(app, text="实战演练", width=10, height=3)
button3.grid(row=12, column=0, sticky=E)
button4 = Button(app, text="进入考核", width=10, height=3)
button4.grid(row=14, column=0, sticky=E)
app.mainloop()