import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import xlwt
data = pd.read_excel(io='D:/人工智能/作业/Homework7.xlsx', sheet_name='In1Out1')
data.insert(loc=1, column='x0', value=1) # 在每行数据的第二列添加x0=1
x_train = data.iloc[:, 1:3].to_numpy() # 抽取第二三列的数据,转换成数组格式
targets = data.iloc[:, 3].to_numpy() # 抽取第四列targets
data1 = pd.read_excel(io='D:/人工智能/作业/Homework7.xlsx', sheet_name='Drawing_In1Out1')
data1.insert(loc=1, column='x0', value=1)
x_Drawing_In1Out1 = data1.iloc[:, 1:3].to_numpy()
x1 = data1.iloc[1:,2].to_numpy()
y1 = data1.iloc[1:,3].to_numpy()
DeltaHid = 0.3
DeltaOut = 0.001
α = 0.1
CCount = 0 # 初始化计数变量
n = x_train.shape[0] # 得到提取数据的数量
Max_iteration = int(input('Total Iteration:')) # 输入最大迭代次数
Weight_In_Hid = np.random.normal(size=(2,2))
Weight_Hid_Out = np.random.normal(size=(3,1))
Weight_In_Hid_Delta =np.zeros((2,2))
Weight_Hid_Out_Delta = np.zeros((3,1))
for i in range(Max_iteration):
for k in range(n):
H = np.zeros([3])
neth1 = np.dot(Weight_In_Hid[:,0],x_train[k])
neth2 = np.dot(Weight_In_Hid[:,1],x_train[k])
H[0] = 1.0
H[1] = 1/(1+np.e**(-neth1))
H[2] = 1/(1+np.e**(-neth2))
# 确定输出层
Y = np.dot(Weight_Hid_Out.T,H) # Y值
Delta_Out = targets[k] - Y
Delta_Hid = np.zeros((2,1))
Delta_Hid[0] = Delta_Out * Weight_Hid_Out[1] * H[1] * (1-H[1])
Delta_Hid[1] = Delta_Out * Weight_Hid_Out[2] * H[2] * (1-H[2])
for a in range(3):
Weight_Hid_Out_Delta[a] = α * Weight_Hid_Out_Delta[a] + DeltaOut * Delta_Out * H[a]
for b in range(2):
for j in range(1,3):
Weight_In_Hid_Delta[b,j-1] = α * Weight_In_Hid_Delta[b,j-1] + DeltaHid * x_train[k,b]
Weight_In_Hid = Weight_In_Hid + Weight_In_Hid_Delta
Weight_Hid_Out = Weight_Hid_Out + Weight_Hid_Out_Delta
CCount += 1 # 计数
if CCount == n: # 当循环次数等于数据数时跳出循环进行下一次循环
break
print('Weight_In_Hid:')
print(Weight_In_Hid)
print('Weight_Hid_Out:')
print(Weight_Hid_Out)
for c in range(n):
n_h1 = np.dot(Weight_In_Hid[:,0].T,x_Drawing_In1Out1[c])
n_h2 = np.dot(Weight_In_Hid[:,1].T,x_Drawing_In1Out1[c])
h0 = 1.0
h1 = 1.0 / (1+np.exp(-n_h1))
h2 = 1.0 / (1+np.exp(-n_h2))
Draw_H = [h0,h1,h2]
# 确定输出层
Draw_Y = np.zeros([n])
Draw_Y[c] = np.dot(Weight_Hid_Out.T[0],Draw_H)# Y值
# 画图
plt.ion()
plt.cla() # 清空画布
plt.ylim(-1, 4) # 固定y轴的取值范围
plt.xlim(-10, 10) # 固定x轴的取值范围
x = np.linspace(-10, 10, 8)
plt.plot(x1,y1, color='red')
plt.plot(x_Drawing_In1Out1[:,1],Draw_Y,color='blue')
plt.pause(0.1) # 暂停一会
plt.ioff() # 关闭交互
plt.show()