马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
代码可以运行但是无法爬出数据,运行完后csv表为空。
问题应该在select的定位上,但是总是解决不了。
感谢帮助!import urllib.request
from bs4 import BeautifulSoup
import pandas as pd
#爬取数据
def request_Data(url):
#创建requests对象
req = urllib.request.Request(url)
page_data_list = []
with urllib.request.urlopen(req) as response:
data = response.read()
htmlstr = data.decode()
L = parse_HTMLData(htmlstr)
page_data_list.extend(L)
return page_data_list
#解析数据
def parse_HTMLData(htmlstr):
sp = BeautifulSoup(htmlstr,'html.parser')
#获得房子信息列表
house_list = sp.select('body > div.main-wrap > div.content-wrap > div.content-side-left > li:nth-child')
#当前页中的记录列表
page_list = []
for house in house_list:
#每一行数据
rows_list = []
#获得房子标题
title = house.select('body > div.main-wrap > div.content-wrap > div.content-side-left > li')
title = (title[0].text).strip()
rows_list.append(title)
#获得房子信息
infos = house.select('body > div.main-wrap > div.content-wrap > div.content-side-left > li > div.list-info > p')
# 获得房子户型
house_type = (infos[0].text).strip()
rows_list.append(house_type)
# 获得房子面积
house_area = (infos[2].text).strip()
rows_list.append(house_area)
# 获得房子朝向
house_face = (infos[4].text).strip()
rows_list.append(house_face)
# 获得房子楼层
house_floor = (infos[6].text).strip()
rows_list.append(house_floor)
#获得房子所在城区
addr_dist = house.select('body > div.main-wrap > div.content-wrap > div.content-side-left > li > div.list-info > p:nth-child(3) > span > a:nth-child(2)')
body > div.main-wrap > div.content-wrap > div.content-side-left > ul > li:nth-child(1) > div.list-info > p:nth-child(3) > span > a:nth-child(2)
rows_list.append(addr_dist)
#获得房子所在小区
addr_name = house.select('body > div.main-wrap > div.content-wrap > div.content-side-left > li > div.list-info > p:nth-child(3) > span > a:nth-child(1)')
addr_name = (addr_name[0].text).strip()
rows_list.append(addr_name)
#获得房子总价
total_price = house.select('body > div.main-wrap > div.content-wrap > div.content-side-left > li.sendsoj.hove > div.price > p.sum > b')
total_price = (total_price[0].text).strip()
rows_list.append(total_price)
#获得房子单价
price = house.select('body > div.main-wrap > div.content-wrap > div.content-side-left > li.sendsoj.hove > div.price > p.unit')
price = (price[0].text).strip()
rows_list.append(price)
page_list.append(rows_list)
return page_list
url_temp = 'http://sh.ganji.com/ershoufang/pn{}/'
data_list = []
for i in range(1,11): #总共70页
url = url_temp.format(i)
print(url)
print('+++++第{}页++++++'.format(i))
try:
L = request_Data(url)
data_list.extend(L)
except Exception as e:
#不再循环
print('不再有数据,结束循环')
break
print(data_list)
#保存数据
#列名
colsname = ['标题', '户型', '面积', '朝向', '楼层', '城区', '小区名', '总价', '单价']
df = pd.DataFrame(data_list, columns = colsname)
df.to_csv('house_data.csv',index = False,encoding='gbk')
|