马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
题目描述:给出 graph 为有 N 个节点(编号为 0, 1, 2, ..., N-1)的无向连通图。
graph.length = N,且只有节点 i 和 j 连通时,j != i 在列表 graph[i] 中恰好出现一次。
返回能够访问所有节点的最短路径的长度。你可以在任一节点开始和停止,也可以多次重访节点,并且可以重用边。
示例 1:
输入:[[1,2,3],[0],[0],[0]]
输出:4
解释:一个可能的路径为 [1,0,2,0,3]
示例 2:
输入:[[1],[0,2,4],[1,3,4],[2],[1,2]]
输出:4
解释:一个可能的路径为 [0,1,4,2,3]
提示:
1 <= graph.length <= 12
0 <= graph[i].length < graph.length
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shortest-path-visiting-all-nodes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
private:
struct State{
int visited_state;
int cur_index;
State(int visited_state, int cur_index): visited_state(visited_state), cur_index(cur_index){}
};
public:
int shortestPathLength(vector<vector<int>>& graph) {
int N = graph.size();
vector<vector<bool> >store_state(1 << N, vector<bool>(N, false));//N个节点共有2^N个状态
//确定结束状态
int end = (1 << N) - 1;
queue<State> store;
//分别以每个节点为初始点,开始遍历
for(int i = 0; i < N; i++){
State cur(1 << i, i);
store.push(cur);
}
//广度优先搜索
int res = 0;
while(!store.empty()){
int temp = store.size();
for(int i = 0; i < temp; i++){
State temp1 = store.front();
store.pop();
int visit = temp1.visited_state;
int cur = temp1.cur_index;
if(visit == end){
return res;
}
for(auto next_index : graph[cur]){
int next_visited = (visit | (1 << next_index));
if(store_state[next_visited][next_index] == false){
store.push(State(next_visited, next_index));
store_state[next_visited][next_index] = true;
}
}
}
res++;
}
return -1;
}
};
状态压缩参考:https://www.bilibili.com/video/B ... 5698129737800543270
代码参考:https://leetcode-cn.com/problems ... -suo-by-hardcoding/ |