|
10鱼币
在基于原项目代码的基础上,根据以下要求做出修改使其满足多标签分类任务,并高亮对应文件的相关代码段注明修改原因:
1.修改softmax激活函数为sigmoid激活函数使其在输出层输出多个标签类别。
2.修改loss函数CrossEntropyLoss为BCELoss。
3.增添评价指标Hamming Loss,Accuracyexam,Precisionexam,Recallexam,Fβexam,并输出这些评价结果。
4.可视化训练时的loss损失,横坐标为epochs,epochs为训练轮数,纵坐标分别为train_loss和val_loss,train_loss为训练过程中的损失,val_loss为验证过程中的损失。
5.可视化预测结果,展示的图片中有输出的多标签类别。
6.当涉及到变量及函数定义时,请使用项目文件中的相关变量及函数定义,并与上下代码段保证顺畅。新定义的变量及函数除外。
将修改好的项目代码文件逐个展示自己的完整内容,并说明每个文件的具体用法。
主要项目代码如下:
model.py:定义了VGG模型的架构,并提供了辅助函数和配置信息。
- import torch.nn as nn
- import torch
- # official pretrain weights
- model_urls = {
- 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
- 'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
- 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
- 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth'
- }
- class VGG(nn.Module):
- def __init__(self, features, num_classes=1000, init_weights=False):
- super(VGG, self).__init__()
- self.features = features
- self.classifier = nn.Sequential(
- nn.Linear(512*7*7, 4096),
- nn.ReLU(True),
- nn.Dropout(p=0.5),
- nn.Linear(4096, 4096),
- nn.ReLU(True),
- nn.Dropout(p=0.5),
- nn.Linear(4096, num_classes)
- )
- if init_weights:
- self._initialize_weights()
- def forward(self, x):
- # N x 3 x 224 x 224
- x = self.features(x)
- # N x 512 x 7 x 7
- x = torch.flatten(x, start_dim=1)
- # N x 512*7*7
- x = self.classifier(x)
- return x
- def _initialize_weights(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- nn.init.xavier_uniform_(m.weight)
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.Linear):
- nn.init.xavier_uniform_(m.weight)
- # nn.init.normal_(m.weight, 0, 0.01)
- nn.init.constant_(m.bias, 0)
- def make_features(cfg: list):
- layers = []
- in_channels = 3
- for v in cfg:
- if v == "M":
- layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
- else:
- conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
- layers += [conv2d, nn.ReLU(True)]
- in_channels = v
- return nn.Sequential(*layers)
- cfgs = {
- 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
- 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
- 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
- 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
- }
- def vgg(model_name="vgg16", **kwargs):
- assert model_name in cfgs, "Warning: model number {} not in cfgs dict!".format(model_name)
- cfg = cfgs[model_name]
- model = VGG(make_features(cfg), **kwargs)
- return model
复制代码
predict.py:基于训练好的VGG模型,对输入的图像进行分类预测,并输出预测结果。
- import os
- import json
- import torch
- from PIL import Image
- from torchvision import transforms
- import matplotlib.pyplot as plt
- from model import vgg
- def main():
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- data_transform = transforms.Compose(
- [transforms.Resize((224, 224)),
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
- # load image
- img_path = "../tulip.jpg"
- assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
- img = Image.open(img_path)
- plt.imshow(img)
- # [N, C, H, W]
- img = data_transform(img)
- # expand batch dimension
- img = torch.unsqueeze(img, dim=0)
- # read class_indict
- json_path = './class_indices.json'
- assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
- with open(json_path, "r") as f:
- class_indict = json.load(f)
-
- # create model
- model = vgg(model_name="vgg16", num_classes=5).to(device)
- # load model weights
- weights_path = "./vgg16Net.pth"
- assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
- model.load_state_dict(torch.load(weights_path, map_location=device))
- model.eval()
- with torch.no_grad():
- # predict class
- output = torch.squeeze(model(img.to(device))).cpu()
- predict = torch.softmax(output, dim=0)
- predict_cla = torch.argmax(predict).numpy()
- print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)],
- predict[predict_cla].numpy())
- plt.title(print_res)
- for i in range(len(predict)):
- print("class: {:10} prob: {:.3}".format(class_indict[str(i)],
- predict[i].numpy()))
- plt.show()
- if __name__ == '__main__':
- main()
复制代码
train.py:基于给定的数据集,训练VGG模型,最终得到可用于图像分类的模型文件。
- import os
- import sys
- import json
- import torch
- import torch.nn as nn
- from torchvision import transforms, datasets
- import torch.optim as optim
- from tqdm import tqdm
- from model import vgg
- def main():
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- print("using {} device.".format(device))
- data_transform = {
- "train": transforms.Compose([transforms.RandomResizedCrop(224),
- transforms.RandomHorizontalFlip(),
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
- "val": transforms.Compose([transforms.Resize((224, 224)),
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
- data_root = os.path.abspath(os.path.join(os.getcwd(), "../")) # get data root path
- image_path = os.path.join(data_root, "data_set", "PlantVillage") # flower data set path
- assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
- train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
- transform=data_transform["train"])
- train_num = len(train_dataset)
- # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
- flower_list = train_dataset.class_to_idx
- cla_dict = dict((val, key) for key, val in flower_list.items())
- # write dict into json file
- json_str = json.dumps(cla_dict, indent=4)
- with open('class_indices.json', 'w') as json_file:
- json_file.write(json_str)
- batch_size = 32
- nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
- print('Using {} dataloader workers every process'.format(nw))
- train_loader = torch.utils.data.DataLoader(train_dataset,
- batch_size=batch_size, shuffle=True,
- num_workers=nw)
- validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
- transform=data_transform["val"])
- val_num = len(validate_dataset)
- validate_loader = torch.utils.data.DataLoader(validate_dataset,
- batch_size=batch_size, shuffle=False,
- num_workers=nw)
- print("using {} images for training, {} images for validation.".format(train_num,
- val_num))
- # test_data_iter = iter(validate_loader)
- # test_image, test_label = test_data_iter.next()
- model_name = "vgg16"
- net = vgg(model_name=model_name, num_classes=4, init_weights=True)
- net.to(device)
- loss_function = nn.CrossEntropyLoss()
- optimizer = optim.Adam(net.parameters(), lr=0.0001)
- epochs = 30
- best_acc = 0.0
- save_path = './{}Net.pth'.format(model_name)
- train_steps = len(train_loader)
- for epoch in range(epochs):
- # train
- net.train()
- running_loss = 0.0
- train_bar = tqdm(train_loader, file=sys.stdout)
- for step, data in enumerate(train_bar):
- images, labels = data
- optimizer.zero_grad()
- outputs = net(images.to(device))
- loss = loss_function(outputs, labels.to(device))
- loss.backward()
- optimizer.step()
- # print statistics
- running_loss += loss.item()
- train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
- epochs,
- loss)
- # validate
- net.eval()
- acc = 0.0 # accumulate accurate number / epoch
- with torch.no_grad():
- val_bar = tqdm(validate_loader, file=sys.stdout)
- for val_data in val_bar:
- val_images, val_labels = val_data
- outputs = net(val_images.to(device))
- predict_y = torch.max(outputs, dim=1)[1]
- acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
- val_accurate = acc / val_num
- print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
- (epoch + 1, running_loss / train_steps, val_accurate))
- if val_accurate > best_acc:
- best_acc = val_accurate
- torch.save(net.state_dict(), save_path)
- print('Finished Training')
- if __name__ == '__main__':
- main()
复制代码
这个错误是因为您试图将预训练模型的权重(输出层有4个神经元)加载到具有不同输出层结构的模型中(输出层有5个神经元)。这会导致权重和模型的形状不匹配,因此无法加载权重。
要解决这个问题,您需要确保模型的类别数量与预训练模型权重的类别数量一致。在这个例子中,您应该将模型的类别数量改为4:
- model = vgg(model_name="vgg16", num_classes=4).to(device)
复制代码
然后,您需要更新`class_indices.json`文件,确保它包含正确的类别数量和类别名称。您可以手动编辑文件或在训练模型时自动生成该文件。
请注意,如果您需要处理5个类别,您需要重新训练模型,以适应5个类别的任务。在这种情况下,您需要使用适当数量的类别重新训练模型,并确保`class_indices.json`文件包含正确的类别信息。
|
最佳答案
查看完整内容
这个错误是因为您试图将预训练模型的权重(输出层有4个神经元)加载到具有不同输出层结构的模型中(输出层有5个神经元)。这会导致权重和模型的形状不匹配,因此无法加载权重。
要解决这个问题,您需要确保模型的类别数量与预训练模型权重的类别数量一致。在这个例子中,您应该将模型的类别数量改为4:
然后,您需要更新`class_indices.json`文件,确保它包含正确的类别数量和类别名称。您可以手动编辑文件或在训练模 ...
|