|
发表于 2023-8-6 15:21:29
|
显示全部楼层
请参考下面的代码,在原代码的基础上添加了提取左侧边界线的功能。
- from tifffile import imread
- import numpy as np
- from osgeo import gdal
- # 读取TIFF格式无人机影像数据
- image_path = 'F:\duneline\dune\dune.tif'
- output_path = 'overlay_image.tif'
- image = imread(image_path)
- # 将输入图像转换为灰度图像
- gray_image = np.mean(image, axis=2)
- # 自适应阈值二值化
- binary = np.zeros_like(gray_image, dtype=np.uint8)
- window_size = 7 # 窗口大小
- k = 0.1 # 控制阈值的参数
- for i in range(window_size // 2, gray_image.shape[0] - window_size // 2):
- for j in range(window_size // 2, gray_image.shape[1] - window_size // 2):
- window = gray_image[i - window_size // 2:i + window_size // 2 + 1, j - window_size // 2:j + window_size // 2 + 1]
- threshold = np.mean(window) - k * np.std(window)
- if gray_image[i, j] > threshold:
- binary[i, j] = 255
- # 提取左侧边界线
- boundary = np.zeros_like(binary, dtype=np.uint8)
- for i in range(binary.shape[0]):
- for j in range(1, binary.shape[1]):
- if binary[i, j-1] == 0 and binary[i, j] == 255: # 左侧边界线
- boundary[i, j] = 255
- # 配置输出的空间参考信息
- in_ds = gdal.Open(image_path)
- projection = in_ds.GetProjection()
- geotransform = in_ds.GetGeoTransform()
- # 创建新的输出图像
- driver = gdal.GetDriverByName('GTiff')
- out_ds = driver.Create(output_path, image.shape[1], image.shape[0], 1, gdal.GDT_Byte)
- # 设置输出图像的空间参考信息
- out_ds.SetProjection(projection)
- out_ds.SetGeoTransform(geotransform)
- # 将边界线部分写入输出图像
- out_band = out_ds.GetRasterBand(1)
- out_band.WriteArray(boundary.astype(np.uint8))
- # 设置颜色表
- color_table = gdal.ColorTable()
- color_table.SetColorEntry(0, (0, 0, 0, 0)) # 黑色,对应值为0
- color_table.SetColorEntry(255, (255, 0, 0, 255)) # 红色,对应值为255
- out_band.SetColorTable(color_table)
- # 释放资源
- out_band.FlushCache()
- out_ds = None
- in_ds = None
- print("保存成功!")
复制代码
请尝试运行修改后的代码,看是否能够成功提取结果左侧的边界线并保存图像。
如果回答对你有帮助,请给我一个最佳答案!  
|
|