内容有亿点多,请做好准备
以上代码定义了一个名为DeeperAutoencoderWithMoreAttention的深度自动编码器模型。下面是对代码的详细解释:
创建类 DeeperAutoencoderWithMoreAttention 并继承自 nn.Module,这是一个 PyTorch 中的基类,用于定义神经网络模块。
在 __init__ 方法中定义模型的结构。该模型由编码器(encoder)和解码器(decoder)两部分组成。
编码器部分按照顺序连接了多个 ResidualBlockWithAttention 残差块和池化层,用于逐步提取输入数据的特征并减小空间维度。具体结构如下:
输入通道数为 3,输出通道数为 32 的 ResidualBlockWithAttention 残差块。
输出通道数为 32 的 ResidualBlockWithAttention 残差块。
使用 2x2 的最大池化层进行下采样。
输出通道数为 32 的 ResidualBlockWithAttention 残差块。
输出通道数为 64 的 ResidualBlockWithAttention 残差块。
使用 2x2 的最大池化层进行下采样。
输出通道数为 64 的 ResidualBlockWithAttention 残差块。
输出通道数为 128 的 ResidualBlockWithAttention 残差块。
使用 2x2 的最大池化层进行下采样。
输出通道数为 128 的 ResidualBlockWithAttention 残差块。
输出通道数为 256 的 ResidualBlockWithAttention 残差块。
使用 2x2 的最大池化层进行下采样。
输出通道数为 256 的 ResidualBlockWithAttention 残差块。
输出通道数为 512 的 ResidualBlockWithAttention 残差块。
使用 2x2 的最大池化层进行下采样。
解码器部分按照顺序连接了多个 ResidualBlockWithAttention 残差块、上采样层和一个卷积层,用于恢复编码器输出的特征到原始输入图像的尺寸。具体结构如下:
使用 2 倍的上采样因子对输入进行上采样。
输出通道数为 512 的 ResidualBlockWithAttention 残差块。
使用 2 倍的上采样因子对输入进行上采样。
输出通道数为 256 的 ResidualBlockWithAttention 残差块。
输出通道数为 256 的 ResidualBlockWithAttention 残差块。
使用 2 倍的上采样因子对输入进行上采样。
输出通道数为 128 的 ResidualBlockWithAttention 残差块。
输出通道数为 128 的 ResidualBlockWithAttention 残差块。
使用 2 倍的上采样因子对输入进行上采样。
输出通道数为 64 的 ResidualBlockWithAttention 残差块。
输出通道数为 64 的 ResidualBlockWithAttention 残差块。
使用 2 倍的上采样因子对输入进行上采样。
输出通道数为 32 的 ResidualBlockWithAttention 残差块。
输出通道数为 32 的 ResidualBlockWithAttention 残差块。
使用大小为 3x3、步长为 1、填充为 1 的卷积层将通道数为 32 的特征图转换为 3 个通道的图像。
使用 ReLU 激活函数。
forward 方法定义了前向传播过程。输入图像经过编码器和解码器后返回解码器输出的结果。
以下是模块图示意图:
----------------------------
| |
| DeeperAutoencoder |
--------------------------------------------- |
| | |
| V |
Input Image ----------- -------------- --------- ----------- Output Image
--------------->| Encoder |--------->| Decoder |-------->| ReLU |------>| ReLU |------> ------------
----------- -------------- --------- -----------
Encoder:
------------------------------------------------------------------------------------------------------------------
| | | | |
| ResidualBlockWithAttention | ResidualBlockWithAttention | MaxPool2d | ResidualBlockWithAttention |
| (3, 32) | (32, 32) | (kernel_size=2, stride=2)| (256, 512) |
| | | | |
------------------------------------------------------------------------------------------------------------------
Decoder:
------------------------------------------------------------------------------------------------------------------
| Upsample | | | |
| (scale_factor=2) | | | |
| | | | |
| ResidualBlockWithAttention (512, 512)| ResidualBlockWithAttention| Conv2d | ReLU |
| | (64, 128) |(32, 3, kernel_size=3, | |
| | | stride=1, padding=1)| |
| | | | |
------------------------------------------------------------------------------------------------------------------