|  | 
 
| 
# -*- coding: utf-8 -*-
x
马上注册,结交更多好友,享用更多功能^_^您需要 登录 才可以下载或查看,没有账号?立即注册  import numpy as np
 import pandas as pd
 
 # 读取数据文件
 data = pd.read_csv('data.csv', encoding='GBK')
 
 def euclidean_distance(x1, x2):
 """欧氏距离计算函数"""
 return np.sqrt(np.sum((x1 - x2) ** 2))
 
 def get_k_neighbors(x, k, data):
 """获取 x 的 K 近邻"""
 distances = []
 for i in range(len(data)):
 if not np.all(data.iloc[i] == x):
 distances.append((i, euclidean_distance(data.iloc[i], x)))
 distances.sort(key=lambda x: x[1])
 return [distances[i][0] for i in range(k)]
 
 def compute_OF1(x, k, data):
 """计算 x 的离群因子 OF1"""
 k_neighbors = get_k_neighbors(x, k, data)
 dist_x_k = euclidean_distance(x, data.iloc[k_neighbors[-1]])
 dist_x_k_minus1 = euclidean_distance(x, data.iloc[k_neighbors[-2]])
 return dist_x_k / dist_x_k_minus1
 
 def detect_outliers(k, data):
 """离群点检测"""
 OF1_values = []
 for i in range(len(data)):
 OF1_values.append(compute_OF1(data.iloc[i], k, data))
 
 # 确定分割点
 OF1_values_sorted = sorted(OF1_values, reverse=True)
 threshold_index = 0
 for i in range(1, len(OF1_values_sorted)):
 if (OF1_values_sorted[i] - OF1_values_sorted[i - 1]) / OF1_values_sorted[i] > 0.1:
 threshold_index = i
 break
 
 threshold = OF1_values_sorted[threshold_index]
 
 # 输出离群点
 outliers = data[OF1_values >= threshold]
 print('当 k =', k, '时,检测到的离群点:\n', outliers)
 
 # k = 2
 detect_outliers(2, data)
 
 # k = 3
 detect_outliers(3, data)
 
 # k = 4
 detect_outliers(4, data)
 
 帮我优化这段代码
 
非常抱歉给你带来困扰,以下是经过修正和完善的代码:
 复制代码# -*- coding: utf-8 -*-import numpy as npimport pandas as pd# 读取数据文件data = pd.read_csv('data.csv', encoding='GBK')def euclidean_distance(x1, x2):    """欧氏距离计算函数"""    return np.sqrt(np.sum((x1 - x2) ** 2))def get_k_neighbors(x, k, data):    """获取 x 的 K 近邻和 K-1 近邻"""    distances = [(i, euclidean_distance(x, data.iloc[i])) for i in range(len(data)) if not (data.iloc[i] == x).all()]    distances.sort(key=lambda x: x[1])    return [distances[i][0] for i in range(k)], [distances[i][0] for i in range(k-1)]def compute_OF1(x, k, data):    """计算 x 的离群因子 OF1"""    k_neighbors, k_minus1_neighbors = get_k_neighbors(x, k, data)    dist_x_k = euclidean_distance(x, data.iloc[k_neighbors])    dist_x_k_minus1 = euclidean_distance(x, data.iloc[k_minus1_neighbors])    return dist_x_k / dist_x_k_minus1def detect_outliers(k, data):    """离群点检测"""    OF1_values = []    for i in range(len(data)):        OF1_values.append(compute_OF1(data.iloc[i], k, data))        # 确定分割点    OF1_values_sorted = sorted(OF1_values, reverse=True)    threshold_index = 0    for i in range(1, len(OF1_values_sorted)):        if (OF1_values_sorted[i-1] - OF1_values_sorted[i]) / OF1_values_sorted[i-1] > 0.1:            threshold_index = i            break    threshold = OF1_values_sorted[threshold_index]        # 输出离群点    outliers = data.iloc[[i for i in range(len(data)) if OF1_values[i] > threshold]]    print('当 k =', k, '时,检测到的离群点:\n', outliers)# k = 2detect_outliers(2, data)# k = 3detect_outliers(3, data)# k = 4detect_outliers(4, data)
希望这次的代码能够正常运行。如果还有其他问题,请随时告诉我。非常感谢你的耐心!
 
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 | 
 |