根据给定的数据,我们需要建立一个回归模型来预测企业是否会在2年后破产。首先,我们需要导入必要的库,从给定数据中提取特征和标签,并拆分数据集为训练集和测试集。
- import numpy as np
- import pandas as pd
- from sklearn.linear_model import LogisticRegression
- from sklearn.model_selection import train_test_split
- # 读取数据
- data = pd.DataFrame({
- 'Y': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1],
- 'X1': [-62.8, 3.3, -120.8, -18.1, -3.8, -61.2, -20.3, -194.5, 20.8,
- -106.1, -39.4, -164.1, -308.9, 7.2, -118.3, -185.9, -34.6,
- -27.9, -48.2, -49.2, -19.2, -18.1, -98.0, -129.0, -4.0,
- -8.7, -59.2, -13.1, -38.0, -57.9, -8.8, -64.7, -11.4, 43.0,
- 47.0, -3.3, 35.0, 46.7, 20.8, 33.0, 26.1, 68.6, 37.3, 59.0,
- 49.6, 12.5, 37.3, 35.3, 49.5, 18.1, 31.4, 21.5, 8.5, 40.6,
- 34.6, 19.9, 17.4, 54.7, 53.5, 35.9, 39.4, 53.1, 39.8, 59.5,
- 16.3, 21.7],
- 'X2': [-89.5, -3.5, -103.2, -28.8, -50.6, -56.2, -17.4, -25.8, -4.3,
- -22.9, -35.7, -17.7, -65.8, -22.6, -34.2, -280.0, -19.4,
- 6.3, 6.8, -17.2, -36.7, -6.5, -20.8, -14.2, -15.8, -36.3,
- -12.8, -17.6, 1.6, 0.7, -9.1, -4.0, 4.8, 16.4, 16.0, 4.0, 20.8,
- 12.6, 12.5, 23.6, 10.4, 13.8, 33.4, 23.1, 23.8, 7.0, 34.1,
- 4.2, 25.1, 13.5, 15.7, -14.4, 5.8, 5.8, 26.4, 26.7, 12.6,
- 14.6, 20.6, 30.5, 7.0, 20.4, 26.4],
- 'X3': [1.7, 1.1, 2.5, 1.1, 0.9, 1.7, 1.0, 0.5, 1.0, 1.5, 1.2, 1.3, 0.8,
- 2.0, 1.5, 6.7, 3.4, 1.3, 1.6, 0.3, 0.8, 0.9, 1.7, 1.3, 2.1, 2.8,
- 2.1, 0.9, 1.2, 0.8, 0.9, 1.7, 1.3, 1.9, 2.7, 1.9, 0.9, 2.4, 1.5,
- 2.1, 1.6, 0.9, 1.2, 1.8, 1.5, 1.9, 3.5, 1.9, 1.0, 1.6, 1.0, 1.5,
- 1.9, 2.0, 2.3, 2.1, 1.3, 1.7, 1.1, 0.9, 1.8, 1.2, 1.9, 2.0, 1.0,
- 1.6]
- })
- # 提取特征和标签
- X = data[['X1', 'X2', 'X3']]
- y = data['Y']
- # 拆分数据集
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
复制代码
接下来,我们使用逻辑回归模型进行训练和预测。
- # 创建模型对象
- model = LogisticRegression()
- # 拟合训练集
- model.fit(X_train, y_train)
- # 预测测试集
- y_pred = model.predict(X_test)
复制代码
最后,我们可以通过比较预测值和真实值来评估模型的性能。
- # 计算准确率
- accuracy = (y_pred == y_test).mean()
- print("模型准确率:", accuracy)
复制代码
完成以上步骤之后,您应该能得到一个关于企业破产预测的回归模型,并计算出准确率。
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 |