|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
训练模型代码- #使用dnn模型
- import torch
- import torch.nn as nn
- from torch.utils import data
- from torch.utils.data import Dataset,DataLoader
- from torch import optim
- #定义神经网络模型
- dropout1, dropout2 = 0.3, 0.6
- class SimpleNN(nn.Module):
- def __init__(self):
- super(SimpleNN, self).__init__() # 继承需要用 SimpleNN
- self.dense = nn.Sequential(
- nn.Flatten(),
- nn.Linear(12, 128),
- nn.ReLU(),
- nn.Dropout(dropout1),
- nn.Linear(128, 256),
- nn.ReLU(),
- nn.Dropout(dropout2),
- nn.Linear(256, 1),
- )
-
- def forward(self, X):
- x = self.dense(X)
- output = torch.sigmoid(x)
- return output
-
- #初始化模型和优化器
- nn_model = SimpleNN()
- loss = nn.BCELoss() #定义损失函数
- optimizer = optim.Adam(nn_model.parameters(),lr=0.0001) #定义优化器
- #初始化列表
- acc_list = []
- loss_list = []
- #k折交叉验证选取训练集与验证集
- def get_k_fold_data(k, i, X, y):
- assert k > 1
- fold_size = len(X) // k
- X_train, y_train = None, None
- for j in range(k):
- start = j * fold_size
- end = (j + 1) * fold_size
- if j == i:
- X_valid, y_valid = X.iloc[start:end], y.iloc[start:end]
- elif X_train is None:
- X_train, y_train = X.iloc[:start], y.iloc[start:end]
- else:
- X_train = pd.concat([X_train, X.iloc[start:end]], ignore_index=True)
- y_train = pd.concat([y_train, y.iloc[start:end]], ignore_index=True)
- return X_train, y_train, X_valid, y_valid
- # 开始训练
- k = 5
- batch_size = 99
- num_epochs = 1000
- for i in range(k):
- X_train, y_train, X_valid, y_valid = get_k_fold_data(k, i, X, y)
- print(f'FOLD {i}')
- print('--------------------------------')
-
- #将DataFrame数据转换为NumPy数组,然后再转换为PyTorch张量
- X_train = torch.tensor(X_train.astype(np.float32).values, dtype=torch.float32)
- y_train = torch.tensor(y_train.astype(np.float32).values, dtype=torch.float32)
- X_valid = torch.tensor(X_valid.astype(np.float32).values, dtype=torch.float32)
- y_valid = torch.tensor(y_valid.astype(np.float32).values, dtype=torch.float32)
-
- #创建数据集
- train_dataset = data.TensorDataset(X_train, y_train)
- valid_dataset = data.TensorDataset(X_valid, y_valid)
- # 获取一个数据迭代器
- train_iter = DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True,num_workers=2)#shuffle=True相当于sampler=RandomSampler(dataset)
- valid_iter = DataLoader(dataset=valid_dataset,batch_size=batch_size,shuffle=True,num_workers=2)
-
- #开始迭代
- for epoch in range(num_epochs):
- train_loss = 0
- num_right = 0
- for tensor_x, tensor_y in train_iter:#训练集执行梯度更新
- tensor_x = tensor_x.float()
- tensor_y = tensor_y.float().reshape(-1, 1)
- optimizer.zero_grad() #梯度清零
- pre_train = nn_model(tensor_x)
- train_l = loss(pre_train, tensor_y) #损失应避免与全局变量loss重名
- train_l.backward()#前向传播
- optimizer.step()#梯度下降
- train_loss += train_l.item() * len(tensor_x)
- result = [1 if out >= 0.5 else 0 for out in pre_train]
- num_right += np.sum(np.array(result) == tensor_y.numpy().reshape(-1))
- train_loss = train_loss / len(train_iter.dataset)
- train_accuracy = num_right / len(train_iter.dataset)
- if epoch % 200 == 0:
- print('Loss: {} Accuracy: {} Epoch:{}'.format(train_loss, train_accuracy, epoch))
-
- with torch.no_grad():
- valid_loss = 0
- num_right = 0
- for tensor_x, tensor_y in valid_iter:
- tensor_x = tensor_x.float()
- tensor_y = tensor_y.float().reshape(-1, 1)
- pre_valid = nn_model(tensor_x)
- valid_l = loss(pre_valid, tensor_y)
- valid_loss += valid_l.item() * len(tensor_x)
- result = [1 if out >= 0.5 else 0 for out in pre_valid]
- num_right += np.sum(np.array(result) == tensor_y.numpy().reshape(-1))
-
- valid_loss = valid_loss / len(valid_iter.dataset)
- valid_accuracy = num_right / len(valid_iter.dataset)
-
- if epoch % 200 == 0:
- print('Valid Loss: {} Accuracy: {} Epoch:{}'.format(valid_loss, valid_accuracy, epoch))
-
- #将每次迭代的结果写入列表
- loss_list.append(valid_loss)
- acc_list.append(valid_accuracy)
-
- print('Training Ended')
- print('Average Loss: {} Average Accuracy: {}'.format(np.mean(loss_list), np.mean(acc_list)))
复制代码
报错代码- ---------------------------------------------------------------------------
- AssertionError Traceback (most recent call last)
- Cell In[28], line 75
- 72 y_valid = torch.tensor(y_valid.astype(np.float32).values, dtype=torch.float32)
- 74 #创建数据集
- ---> 75 train_dataset = data.TensorDataset(X_train, y_train)
- 76 valid_dataset = data.TensorDataset(X_valid, y_valid)
- 78 # 获取一个数据迭代器
- File /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataset.py:204, in TensorDataset.__init__(self, *tensors)
- 203 def __init__(self, *tensors: Tensor) -> None:
- --> 204 assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors), "Size mismatch between tensors"
- 205 self.tensors = tensors
- AssertionError: Size mismatch between tensors
复制代码 |
|