|

楼主 |
发表于 2024-10-22 22:04:01
|
显示全部楼层
- from mlxtend.regressor import StackingRegressor
- from sklearn.metrics import mean_squared_error
- # 初始化基模型
- models = [LR_model, dt_model, svm_model, rf_model,knn_model,simple_dnn_model]
- print('base model')
- for model in models:
- model.fit(X_train, y_train)
- pred = model.predict(X_valid)
- print("loss is {}".format(mean_squared_error(y_valid, pred)))
- sclf = StackingRegressor(regressors=models, meta_regressor=LinearRegression)
- # 训练回归器
- sclf.fit(X_train, y_train)
- pred = sclf.predict(X_valid)
- print('stacking model')
- print("loss is {}".format(mean_squared_error(y_valid, pred)))
- plt.scatter(np.arange(len(pred)), pred)
- plt.plot(np.arange(len(y_valid)), y_valid)
- plt.show()
复制代码
上述代码提示报错未定义simplednnmodel,- --------------------------------------------------------------------------
- NameError Traceback (most recent call last)
- Cell In[43], line 5
- 2 from sklearn.metrics import mean_squared_error
- 4 # 初始化基模型
- ----> 5 models = [LR_model, dt_model, svm_model, rf_model,knn_model,simple_dnn_model]
- 7 print('base model')
- 8 for model in models:
- NameError: name 'simple_dnn_model' is not defined
复制代码
但是前面已经定义并执行了这个函数- #dnn模型(train_test_split)
- import torch
- import torch.nn as nn
- from torch.utils import data
- from torch.utils.data import Dataset,DataLoader
- from torch import optim
- #定义神经网络模型
- dropout1, dropout2 = 0.3, 0.6
- class SimpleNN(nn.Module):
- def __init__(self):
- super(SimpleNN, self).__init__() # 继承需要用 SimpleNN
- self.dense = nn.Sequential(
- nn.Flatten(),
- nn.Linear(12, 128),
- nn.ReLU(),
- nn.Dropout(dropout1),
- nn.Linear(128, 256),
- nn.ReLU(),
- nn.Dropout(dropout2),
- nn.Linear(256, 1),
- )
-
- def forward(self, X):
- x = self.dense(X)
- output = torch.sigmoid(x)
- return output
-
- #初始化模型和优化器
- simple_dnn_model = SimpleNN()
- loss = nn.BCELoss() #定义损失函数
- optimizer = optim.Adam(nn_model.parameters(),lr=0.0001) #定义优化器
- #初始化列表
- acc_list = []
- loss_list = []
- # 开始训练
- batch_size = 99
- num_epochs = 1000
-
- #创建数据集
- train_dataset = data.TensorDataset(X_train, y_train)
- valid_dataset = data.TensorDataset(X_valid, y_valid)
- # 获取一个数据迭代器
- train_iter = DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True,num_workers=2)#shuffle=True相当于sampler=RandomSampler(dataset)
- valid_iter = DataLoader(dataset=valid_dataset,batch_size=batch_size,shuffle=True,num_workers=2)
- #开始迭代
- for epoch in range(num_epochs):
- train_loss = 0
- num_right = 0
- for tensor_x, tensor_y in train_iter:#训练集执行梯度更新
- tensor_x = tensor_x.float()
- tensor_y = tensor_y.float().reshape(-1, 1)
- optimizer.zero_grad() #梯度清零
- pre_train = simple_dnn_model(tensor_x)
- train_l = loss(pre_train, tensor_y) #损失应避免与全局变量loss重名
- train_l.backward()#前向传播
- optimizer.step()#梯度下降
- train_loss += train_l.item() * len(tensor_x)#批量损失
- result = [1 if out >= 0.5 else 0 for out in pre_train]
- num_right += np.sum(np.array(result) == tensor_y.numpy().reshape(-1))
- train_loss = train_loss / len(train_iter.dataset)
- train_accuracy = num_right / len(train_iter.dataset)
- if epoch % 200 == 0:
- print('Loss: {} Accuracy: {} Epoch:{}'.format(train_loss, train_accuracy, epoch))
- with torch.no_grad():
- valid_loss = 0
- num_right = 0
- for tensor_x, tensor_y in valid_iter:
- tensor_x = tensor_x.float()
- tensor_y = tensor_y.float().reshape(-1, 1)
- pre_valid = simple_dnn_model(tensor_x)
- valid_l = loss(pre_valid, tensor_y)
- valid_loss += valid_l.item() * len(tensor_x)
- result = [1 if out >= 0.5 else 0 for out in pre_valid]
- num_right += np.sum(np.array(result) == tensor_y.numpy().reshape(-1))
- valid_loss = valid_loss / len(valid_iter.dataset)
- valid_accuracy = num_right / len(valid_iter.dataset)
- if epoch % 200 == 0:
- print('Valid Loss: {} Accuracy: {} Epoch:{}'.format(valid_loss, valid_accuracy, epoch))
- #将每次迭代的结果写入列表
- loss_list.append(valid_loss)
- acc_list.append(valid_accuracy)
- print('Training Ended')
- print('Average Loss: {} Average Accuracy: {}'.format(np.mean(loss_list), np.mean(acc_list)))
复制代码 |
|