|

楼主 |
发表于 2024-10-26 21:13:00
|
显示全部楼层
- #使用dnn模型(k折交叉验证)
- import torch
- import torch.nn as nn
- from torch.utils import data
- from torch.utils.data import Dataset,DataLoader
- from torch import optim
- #定义神经网络模型
- class SimpleNN(nn.Module):
- def __init__(self):
- super(SimpleNN, self).__init__() # 继承需要用 SimpleNN
- self.hidden_layer1 = nn.Linear(154,1024)
- self.hidden_layer2 = nn.Linear(1024,1024)
- self.hidden_layer3 = nn.Linear(1024,1024)
- self.hidden_layer4 = nn.Linear(1024,1024)
- self.output_layer = nn.Linear(1024,1)
- self.dropout = nn.Dropout(0.2)
- nn.init.xavier_uniform_(self.hidden_layer1.weight) #初始化每层网络的权重参数
- nn.init.xavier_uniform_(self.hidden_layer2.weight)
- nn.init.xavier_uniform_(self.hidden_layer3.weight)
- nn.init.xavier_uniform_(self.hidden_layer4.weight)
- nn.init.xavier_uniform_(self.output_layer.weight)
-
- def forward(self, X):
- inputs = X
- layer1_out = torch.nn.functional.gelu(self.hidden_layer1(inputs))
- layer1_out = self.dropout(layer1_out)
- layer2_out = torch.nn.functional.gelu(self.hidden_layer2(layer1_out))
- layer2_out = self.dropout(layer2_out)
- layer3_out = torch.nn.functional.gelu(self.hidden_layer3(layer2_out))
- layer3_out = self.dropout(layer3_out)
- layer4_out = torch.nn.functional.gelu(self.hidden_layer4(layer3_out))
- layer4_out = self.dropout(layer4_out)
- output = torch.relu(self.output_layer(layer4_out))
- return output
-
- #初始化模型和优化器
- dnn_model = SimpleNN()
- loss = nn.MSELoss() #定义损失函数
- optimizer = optim.Adam(dnn_model.parameters(),lr=0.0001,weight_decay=0) #定义优化器
- #k折交叉验证选取训练集与验证集
- def get_k_fold_data(k, i, X, y):
- assert k > 1
- fold_size = len(X) // k
- X_train, y_train = None, None
- for j in range(k):
- start = j * fold_size
- end = (j + 1) * fold_size
- if j == i:
- X_valid, y_valid = X.iloc[start:end], y.iloc[start:end]
- elif X_train is None:
- X_train, y_train = X.iloc[start:end], y.iloc[start:end]
- else:
- X_train = pd.concat([X_train, X.iloc[start:end]], ignore_index=True)
- y_train = pd.concat([y_train, y.iloc[start:end]], ignore_index=True)
- return X_train, y_train, X_valid, y_valid
- # 开始训练
- k = 5
- batch_size = 64
- num_epochs = 100
- #weight_decay = 0
- #初始化损失
- train_l_sum, valid_l_sum = 0, 0
- #初始化列表
- train_ls, valid_ls = [], []
- for i in range(k):
- X_train, y_train, X_valid, y_valid = get_k_fold_data(k, i, X, y)
- print(f'FOLD {i}')
- print('--------------------------------')
-
- #将DataFrame数据转换为NumPy数组,然后再转换为PyTorch张量
- X_train = torch.tensor(X_train.astype(np.float32).values, dtype=torch.float32)
- y_train = torch.tensor(y_train.astype(np.float32).values, dtype=torch.float32)
- X_valid = torch.tensor(X_valid.astype(np.float32).values, dtype=torch.float32)
- y_valid = torch.tensor(y_valid.astype(np.float32).values, dtype=torch.float32)
-
- #创建数据集
- train_dataset = data.TensorDataset(X_train, y_train)
- valid_dataset = data.TensorDataset(X_valid, y_valid)
- # 获取一个数据迭代器
- train_iter = DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True,num_workers=2)#shuffle=True相当于sampler=RandomSampler(dataset)
- valid_iter = DataLoader(dataset=valid_dataset,batch_size=batch_size,shuffle=True,num_workers=2)
-
- #开始迭代
- for epoch in range(num_epochs):
- train_loss = 0
- for tensor_x, tensor_y in train_iter:#训练集执行梯度更新
- tensor_x = tensor_x.float()
- tensor_y = tensor_y.float().reshape(-1, 1)
- optimizer.zero_grad() #梯度清零
- pre_train = dnn_model(tensor_x)
- train_l = loss(pre_train, tensor_y) #损失应避免与全局变量loss重名
- train_l.backward()#前向传播
- optimizer.step()#梯度下降
- train_loss += train_l.item() * len(tensor_x) #批量规模损失累加
-
- train_loss /= len(train_dataset) #每次迭代平均损失
-
- if epoch % 20 == 0:
- print('Loss: {} Epoch:{}'.format(train_loss, epoch))
-
- with torch.no_grad():
- valid_loss = 0
-
- for tensor_x, tensor_y in valid_iter:
- tensor_x = tensor_x.float()
- tensor_y = tensor_y.float().reshape(-1, 1)
- pre_valid = dnn_model(tensor_x)
- valid_l = loss(pre_valid, tensor_y)
- valid_loss += valid_l.item() * len(tensor_x)
-
- valid_loss /= len(valid_dataset)
-
- if epoch % 20 == 0:
- print('Valid Loss: {} Epoch:{}'.format(valid_loss, epoch))
-
- if i == 0:
- plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],legend=['train', 'valid'], yscale='log')
- #将每折的损失添加到列表中
- train_ls.append(train_loss)
- valid_ls.append(valid_loss)
-
- print('Training Ended')
- print('Train Average Loss: {} Valid Average Loss: {}'.format(np.mean(train_ls),np.mean(valid_ls)))
复制代码
自定义的神经网络如上,结果如下,代码存在什么问题?
- FOLD 0
- --------------------------------
- Loss: 36344742366.57045 Epoch:0
- Valid Loss: 29782921659.381443 Epoch:0
- Loss: 3065413660.5910654 Epoch:20
- Valid Loss: 2382111456.329897 Epoch:20
- Loss: 2432799436.09622 Epoch:40
- Valid Loss: 2090321211.8213058 Epoch:40
- Loss: 2391088845.85567 Epoch:60
- Valid Loss: 1990942727.9175258 Epoch:60
- Loss: 2284166063.065292 Epoch:80
- Valid Loss: 2163259427.1890035 Epoch:80
- FOLD 1
- --------------------------------
- Loss: 2206484537.182131 Epoch:0
- Valid Loss: 2204314296.742268 Epoch:0
- Loss: 1998103985.2646048 Epoch:20
- Valid Loss: 2287907708.9209623 Epoch:20
- Loss: 2017798130.1443298 Epoch:40
- Valid Loss: 2118876600.3024056 Epoch:40
- Loss: 1974789904.274914 Epoch:60
- Valid Loss: 2002172580.5085912 Epoch:60
- Loss: 1853698483.4639175 Epoch:80
- Valid Loss: 1899964549.718213 Epoch:80
- FOLD 2
- --------------------------------
- Loss: 1769865234.5841925 Epoch:0
- Valid Loss: 1894314067.573883 Epoch:0
- Loss: 1821377592.742268 Epoch:20
- Valid Loss: 2032567193.95189 Epoch:20
- Loss: 1743828709.6082475 Epoch:40
- Valid Loss: 2015808563.024055 Epoch:40
- Loss: 1722286362.8316152 Epoch:60
- Valid Loss: 1898440543.0103092 Epoch:60
- Loss: 1575469064.7972507 Epoch:80
- Valid Loss: 1905074117.9381444 Epoch:80
- FOLD 3
- --------------------------------
- Loss: 1642522463.8900344 Epoch:0
- Valid Loss: 1701700081.4845362 Epoch:0
- Loss: 1600776652.975945 Epoch:20
- Valid Loss: 1750697497.5120275 Epoch:20
- Loss: 1523211206.1580756 Epoch:40
- Valid Loss: 1828443650.8591065 Epoch:40
- Loss: 1462216860.5910654 Epoch:60
- Valid Loss: 1648079266.3092782 Epoch:60
- Loss: 1537743156.5635738 Epoch:80
- Valid Loss: 1658678443.1065292 Epoch:80
- FOLD 4
- --------------------------------
- Loss: 1444227294.790378 Epoch:0
- Valid Loss: 1351599504.274914 Epoch:0
- Loss: 1354902019.079038 Epoch:20
- Valid Loss: 1279266340.7285223 Epoch:20
- Loss: 1205427271.257732 Epoch:40
- Valid Loss: 1247919564.5360825 Epoch:40
- Loss: 1265103737.8419244 Epoch:60
- Valid Loss: 1256292511.0103092 Epoch:60
- Loss: 1193805096.467354 Epoch:80
- Valid Loss: 1190893154.969072 Epoch:80
- Training Ended
- Train Average Loss: 1595598623.2302403 Valid Average Loss: 1713117385.5450172
复制代码 |
|