|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 柿子饼同学 于 2024-11-3 19:06 编辑
直线的设法
如果给的点在 x 轴上, 推荐设 x = Ay + m, 其中 A = 1/k
别的话就正常设
二次曲线切线方程, 切点 (a, b)
那么切线方程是 A*a*x + B*b*y + C*(a + x)/2 + D*(b + y)/2 + F = 0
两个直线的斜率相加为定值, 底下的线斜率是确定的, 先求出切线方程找到斜率
四点共圆
对角线斜率和为 0
想想垂径定理, 相似
抛物线焦点弦
弦长: 2*p/sin^2(倾斜角)
过焦点的弦为直径形成的圆和准线相切, 半个的话和 y 轴相切
过焦点弦的中点纵坐标 y0, 斜率 k, 则 k * y0 = p
极点极线
两个直线相交, 和二次曲线有四个交点, 两个直线的交点是极点
这四个交点两两相连产生了两个新的直线, 新直线的交点的轨迹在定线上, 称为极线
设极点的坐标 (x0, y0)
那么极线的方程 (x + x0)/a^2 + (y + y0)/b^2 = 1
场合 : 遇到定点, 定线的时候
斜着的比例关系
转化为竖直的关系, 用相似
距离类
双曲线焦点到渐近线距离是 b , 渐近线 : y = +- b/a x
推柿子
换元建议把一个换成单项式
两个东西相乘, 看看相加会变成什么 , 然后利用 ab <= ( (a + b) / 2) ^ 2
最高次项一致时想到基本不等式
三角形面积
使用点线距求高, 底 * 高
使用割补法, 水平宽 * 铅锤高
|x1 - x2| = sqrt(delta) / |a|
四边形面积
对角线给出夹角 : 对角线长度相乘 * sin
垂径定理 (椭圆)
椭圆的 "圆周角" 的两个直线斜率满足 k1 * k2 = - b^2 / a^2
注意椭圆的中心对称性质
场合 : 过原点的直线, 弦的中点
垂径定理 (双曲线)
过原点的一条直线交双曲线的两个交点, 然后再和一个双曲线上的点连边, 那么这两个边的斜率相乘等于 b^2 / a^2
对于渐近线也成立
焦点三角形面积
有了这些东西我们可以用等面积法求
然后注意一下万能公式
底 * 高
内接圆 : 用等面积法
椭圆 给了顶角 : b^2 * tan(角度 / 2)
双曲线 给了顶角 : b ^ 2 / tan(角度 / 2)
焦半径公式 (椭圆)
设在椭圆上的点坐标是 (x, y) , 那么她和两个焦点连线的距离和等于 2a
各自的长度为 a + e*x, a - e*x
用两点距离公式推
焦半径公式 (双曲线)
设在双曲线上的点坐标为 (x, y), 那么她和两个焦点连线的距离差为 2a
各自的长度为 |a + e*x|, |a - e*x|
|
|