Training Start!
====================================================================================================
/tmp/ipykernel_31/152112840.py:32: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
'token_type_ids':torch.tensor(encoded_dict['token_type_ids'],dtype=torch.long).unsqueeze(dim=0)}
/tmp/ipykernel_31/152112840.py:32: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
'token_type_ids':torch.tensor(encoded_dict['token_type_ids'],dtype=torch.long).unsqueeze(dim=0)}
/tmp/ipykernel_31/152112840.py:32: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
'token_type_ids':torch.tensor(encoded_dict['token_type_ids'],dtype=torch.long).unsqueeze(dim=0)}
0%
0/229 [00:00<?, ?it/s]
/tmp/ipykernel_31/152112840.py:32: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
'token_type_ids':torch.tensor(encoded_dict['token_type_ids'],dtype=torch.long).unsqueeze(dim=0)}
/tmp/ipykernel_31/152112840.py:32: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
'token_type_ids':torch.tensor(encoded_dict['token_type_ids'],dtype=torch.long).unsqueeze(dim=0)}
/tmp/ipykernel_31/152112840.py:32: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
'token_type_ids':torch.tensor(encoded_dict['token_type_ids'],dtype=torch.long).unsqueeze(dim=0)}
/tmp/ipykernel_31/152112840.py:32: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
'token_type_ids':torch.tensor(encoded_dict['token_type_ids'],dtype=torch.long).unsqueeze(dim=0)}
/tmp/ipykernel_31/152112840.py:32: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
'token_type_ids':torch.tensor(encoded_dict['token_type_ids'],dtype=torch.long).unsqueeze(dim=0)}
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
Cell In[58], line 4
1 print('Training Start!')
2 print('=' * 100)
----> 4 train(model,
5 device,
6 train_dataloader,
7 valid_dataloader,
8 CFG.epochs,
9 loss_fn,
10 optimizer,
11 metric)
13 del model,train_dataloader, valid_dataloader
14 gc.collect()
Cell In[39], line 17, in train(model, device, train_dataloader, valid_dataloader, epochs, loss_fn, optimizer, metric)
14 train_step = 0
15 pbar = tqdm(train_dataloader)#tqdm参数是一个iterable
---> 17 for batch in pbar: # you can also write like "for batch in tqdm(train_dataloader"
18 optimizer.zero_grad() # initialize
19 train_step += 1
File /opt/conda/lib/python3.10/site-packages/tqdm/notebook.py:250, in tqdm_notebook.__iter__(self)
248 try:
249 it = super().__iter__()
--> 250 for obj in it:
251 # return super(tqdm...) will not catch exception
252 yield obj
253 # NB: except ... [ as ...] breaks IPython async KeyboardInterrupt
File /opt/conda/lib/python3.10/site-packages/tqdm/std.py:1181, in tqdm.__iter__(self)
1178 time = self._time
1180 try:
-> 1181 for obj in iterable:
1182 yield obj
1183 # Update and possibly print the progressbar.
1184 # Note: does not call self.update(1) for speed optimisation.
File /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py:630, in _BaseDataLoaderIter.__next__(self)
627 if self._sampler_iter is None:
628 # TODO(https://github.com/pytorch/pytorch/issues/76750)
629 self._reset() # type: ignore[call-arg]
--> 630 data = self._next_data()
631 self._num_yielded += 1
632 if self._dataset_kind == _DatasetKind.Iterable and \
633 self._IterableDataset_len_called is not None and \
634 self._num_yielded > self._IterableDataset_len_called:
File /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1344, in _MultiProcessingDataLoaderIter._next_data(self)
1342 else:
1343 del self._task_info[idx]
-> 1344 return self._process_data(data)
File /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1370, in _MultiProcessingDataLoaderIter._process_data(self, data)
1368 self._try_put_index()
1369 if isinstance(data, ExceptionWrapper):
-> 1370 data.reraise()
1371 return data
File /opt/conda/lib/python3.10/site-packages/torch/_utils.py:706, in ExceptionWrapper.reraise(self)
702 except TypeError:
703 # If the exception takes multiple arguments, don't try to
704 # instantiate since we don't know how to
705 raise RuntimeError(msg) from None
--> 706 raise exception
KeyError: Caught KeyError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/opt/conda/lib/python3.10/site-packages/pandas/core/indexes/base.py", line 3805, in get_loc
return self._engine.get_loc(casted_key)
File "index.pyx", line 167, in pandas._libs.index.IndexEngine.get_loc
File "index.pyx", line 196, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/hashtable_class_helper.pxi", line 2606, in pandas._libs.hashtable.Int64HashTable.get_item
File "pandas/_libs/hashtable_class_helper.pxi", line 2630, in pandas._libs.hashtable.Int64HashTable.get_item
KeyError: 1287
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/worker.py", line 309, in _worker_loop
data = fetcher.fetch(index) # type: ignore[possibly-undefined]
File "/opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 52, in <listcomp>
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/tmp/ipykernel_31/152112840.py", line 15, in __getitem__
text = self.df.loc[idx]['cleaned'] # extracting text from each row
File "/opt/conda/lib/python3.10/site-packages/pandas/core/indexing.py", line 1191, in __getitem__
return self._getitem_axis(maybe_callable, axis=axis)
File "/opt/conda/lib/python3.10/site-packages/pandas/core/indexing.py", line 1431, in _getitem_axis
return self._get_label(key, axis=axis)
File "/opt/conda/lib/python3.10/site-packages/pandas/core/indexing.py", line 1381, in _get_label
return self.obj.xs(label, axis=axis)
File "/opt/conda/lib/python3.10/site-packages/pandas/core/generic.py", line 4301, in xs
loc = index.get_loc(key)
File "/opt/conda/lib/python3.10/site-packages/pandas/core/indexes/base.py", line 3812, in get_loc
raise KeyError(key) from err
KeyError: 1287