|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 欧拉计划 于 2016-8-18 23:11 编辑
Special subset sums: testing
Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true:
i. S(B) ≠ S(C); that is, sums of subsets cannot be equal.
ii. If B contains more elements than C then S(B) > S(C).
For example, {81, 88, 75, 42, 87, 84, 86, 65} is not a special sum set because 65 + 87 + 88 = 75 + 81 + 84, whereas {157, 150, 164, 119, 79, 159, 161, 139, 158} satisfies both rules for all possible subset pair combinations and S(A) = 1286.
Using sets.txt (right click and "Save Link/Target As..."), a 4K text file with one-hundred sets containing seven to twelve elements (the two examples given above are the first two sets in the file), identify all the special sum sets,
and find the value of
NOTE: This problem is related to Problem 103 and Problem 106.
题目:
用 S(A) 表示一个包含 n 个元素的集合 A 的元素之和。如果该集合的任意两个非空不相交子集满足以下性质,我们将其称为一个特殊和集。
i. S(B) ≠ S(C); 也就是两个子集的和不相等。
ii. 如果 B 中的元素数量多于 C,则 S(B) > S(C)。
例如,{81, 88, 75, 42, 87, 84, 86, 65} 不是一个特殊和集,因为 65 + 87 + 88 = 75 + 81 + 84。而 {157, 150, 164, 119, 79, 159, 161, 139, 158} 的所有子集都满足上述两个条件,而且 S(A)=1286。
p105_sets.txt
(3.55 KB, 下载次数: 7)
包含一千个集合,每个集合包含 7 到 12 个元素,找出所有的特殊和集
并求
注意:该题目与题目 103, 106 相关。
|
|