|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Composites with prime repunit property
A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k; for example, R(6) = 111111.
Given that n is a positive integer and GCD(n, 10) = 1, it can be shown that there always exists a value, k, for which R(k) is divisible by n, and let A(n) be the least such value of k; for example, A(7) = 6 and A(41) = 5.
You are given that for all primes, p > 5, that p − 1 is divisible by A(p). For example, when p = 41, A(41) = 5, and 40 is divisible by 5.
However, there are rare composite values for which this is also true; the first five examples being 91, 259, 451, 481, and 703.
Find the sum of the first twenty-five composite values of n for which
GCD(n, 10) = 1 and n − 1 is divisible by A(n).
题目:
如果一个数全部由 1 组成,称之为一个循环整数。定义 R(k) 为长度为k的循环整数,例如 R(6) = 111111。
已知 n 是正整数以及 GCD(n, 10) = 1,可以证明,总存在一个 k 值使得 R(k) 可以被 n 整除,用 A(n) 表示这些 k 值中最小的,例如 A(7) = 6,A(41) =5。
已知对于所有大于 5 的质数 p,p-1 能够被 A(p) 整除。例如,当 p=41 时,A(41)=5,40 可以被 5 整除。
但是,有一些罕见的合数也满足整个条件;前五个例子是 91, 259, 451, 481 和 703。
求前 25 个满足 GCD(n, 10) = 1 以及 n-1 能被 A(n) 整除的合数 n 之和。
|
|