马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Same differences
Given the positive integers, x, y, and z, are consecutive terms of an arithmetic progression, the least value of the positive integer, n, for which the equation, x2 − y2 − z2 = n, has exactly two solutions is n = 27:
342 − 272 − 202 = 122 − 92 − 62 = 27
It turns out that n = 1155 is the least value which has exactly ten solutions.
How many values of n less than one million have exactly ten distinct solutions?
题目:
给定等差数列中的三个数字 x,y 和 z,最小 x2 − y2 − z2 = n 有两个解的最小的 n 是 27:
342 − 272 − 202 = 122 − 92 − 62 = 27
事实上 n = 1155 是使得上述方程具有 10 个解的最小值。
一百万以下有多少个数使得上述方程有 10 个不同的解?
|