|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Special isosceles triangles
Consider the isosceles triangle with base length, b = 16, and legs, L = 17.
By using the Pythagorean theorem it can be seen that the height of the triangle, h = √(172 − 82) = 15, which is one less than the base length.
With b = 272 and L = 305, we get h = 273, which is one more than the base length, and this is the second smallest isosceles triangle with the property that h = b ± 1.
Find ∑ L for the twelve smallest isosceles triangles for which h = b ± 1 and b, L are positive integers.
题目:
考虑底边 b 长为 16,腰长 L 为 17 的等腰三角形:
利用勾股定理可知此三角形的高 h 为 h = √(172 − 82) = 15,比底边长少 1。
当 b = 272, L = 305 时,可以得到 h = 273,比底边长大 1。而这也是第二小的满足 h = b ± 1 的等腰三角形。
求前 12 个满足此性质的三角形的 L 之和,其中 b 和 L 均为正整数。
|
|