|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Pythagorean tiles
Let (a, b, c) represent the three sides of a right angle triangle with integral length sides. It is possible to place four such triangles together to form a square with length c.
For example, (3, 4, 5) triangles can be placed together to form a 5 by 5 square with a 1 by 1 hole in the middle and it can be seen that the 5 by 5 square can be tiled with twenty-five 1 by 1 squares.
However, if (5, 12, 13) triangles were used then the hole would measure 7 by 7 and these could not be used to tile the 13 by 13 square.
Given that the perimeter of the right triangle is less than one-hundred million, how many Pythagorean triangles would allow such a tiling to take place?
题目:
令 (a, b, c) 表示一个边长皆为整数的直角三角形的三边长。可以将四个这样的三角形放在一起来形成一个边长为 c 的正方形。
例如,(3, 4, 5) 这个三角形可以形成一个 5×5 的正方形,这个正方形中间有一个 1×1 的洞。可以看出这个 5×5 的正方形可以用 25 个 1×1 的正方形来铺成。
但是,如果 (5, 12, 13) 这个三角形被用来形成正方形,那么中间的洞大小为 7×7,而 7×7 的正方形无法铺成 13×13 的正方形。
对于周长小于 1 亿的直角三角形,有多少个毕达哥拉斯三角形满足上述的“铺砖”条件?
|
|