|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Rectangles in cross-hatched grids
In a 3x2 cross-hatched grid, a total of 37 different rectangles could be situated within that grid as indicated in the sketch.
There are 5 grids smaller than 3x2, vertical and horizontal dimensions being important, i.e. 1x1, 2x1, 3x1, 1x2 and 2x2. If each of them is cross-hatched, the following number of different rectangles could be situated within those smaller grids:
1x1: 1
2x1: 4
3x1: 8
1x2: 4
2x2: 18
Adding those to the 37 of the 3x2 grid, a total of 72 different rectangles could be situated within 3x2 and smaller grids.
How many different rectangles could be situated within 47x43 and smaller grids?
题目:
在一个 3×2 的交叉格子中,一共可以找出 37 个矩形,如下图所示。
在区分横纵的情况下,小于 3×2 的格子一共有 5 个,1x1, 2x1, 3x1, 1x2 以及 2x2。如果将它们都用交叉线画成交叉格子,在它们内部分别可以找出如下数目的矩形:
1x1: 1
2x1: 4
3x1: 8
1x2: 4
2x2: 18
将上面的数字与 3×2 中的 37 相加,可得在 3×2 以及更小的交叉格子中一共可以得到 72 个不同的矩形。
问,在 47×43 以及更小的交叉格子里,一共可以得到多少个不同的矩形?
|
|