|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Integer angled Quadrilaterals
Let ABCD be a convex quadrilateral, with diagonals AC and BD. At each vertex the diagonal makes an angle with each of the two sides, creating eight corner angles.
For example, at vertex A, the two angles are CAD, CAB.
We call such a quadrilateral for which all eight corner angles have integer values when measured in degrees an "integer angled quadrilateral". An example of an integer angled quadrilateral is a square, where all eight corner angles are 45°. Another example is given by DAC = 20°, BAC = 60°, ABD = 50°, CBD = 30°, BCA = 40°, DCA = 30°, CDB = 80°, ADB = 50°.
What is the total number of non-similar integer angled quadrilaterals?
Note: In your calculations you may assume that a calculated angle is integral if it is within a tolerance of 10-9 of an integer value.
题目:
令 ABCD 为凸四边形,AC 和 BD 为对角线。在每一个顶点,对角线与相交的两边分别形成一个角,这样一共形成了 8 个角。
例如,在顶点 A,形成的两个角为 CAD,CAB。
如果这 8 个角以度为单位全部是整数的话,我们称这个四边形为“整数角四边形”。例如正方形就是一个整数角四边形,8 个角里每个都是 45°。如下例子也是一个整数角四边形:DAC = 20°, BAC = 60°, ABD = 50°, CBD = 30°, BCA = 40°, DCA = 30°, CDB = 80°, ADB = 50°。
不相似的整数角四边形一共有多少个?
注意:在计算角度时,如果度数与整数的差在 10-9 以内,就可以认为是一个整数角度。
|
|