|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
import numpy as np
import matplotlib.pyplot as plt
import sklearn.datasets
import sklearn.linear_model
import sklearn
from utils import plot_decision_boundary
#Generate a dataset and plot it
np.random.seed(0)
X,y=sklearn.datasets.make_moons(200,noise=0.20)
plt.scatter(X[:,0],X[:,1],s=40,c=y,cmap=plt.cm.Spectral)
#Train the logistic rgeression classifier
clf=sklearn.linear_model.LogisticRegressionCV()
clf.fit(X,y)
#PLot the decision boundary
plot_decision_boundary(lambda x: clf.predict(x))
plt.title("logistic regression")
plt.show()
求大神 改错啊 |
|