|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
这个 错误提示怎么搞
源代码如下:
import csv
#导入数据
from numpy import genfromtxt, zeros
data = genfromtxt('F:\qitashuju.csv',delimiter=',',usecols=(0,1,2,3))
target = genfromtxt('F:\qitashuju.csv',delimiter=',',usecols=(4),dtype=str)
filename='F://qitashuju.csv'
with open(filename) as f:
reader=csv.reader(f)
header_row=next(reader)
print(header_row)
for index,column_header in enumerate(header_row):
print(index,column_header)
#检验是否导入成功
#print data.shape
#print target.shape
#print set(target)
from pylab import plot,show
plot(data[target=='1',1],data[target=='1',0],'bo')
plot(data[target=='2',1],data[target=='2',0],'ro')
plot(data[target=='3',1],data[target=='3',0],'go')
#show()
#分类朴素贝叶斯
#设置label值
t = zeros(len(target))
t[target == '1'] = 1
t[target == '2'] = 2
t[target == '3'] = 3
#导入贝叶斯函数
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(data,t)
#预测检验一下
#print classifier.predict(data[0])
#print t[0]
#validation,测试集被指定为源数据的40%
from sklearn import cross_validation
train, test, t_train, t_test = cross_validation.train_test_split(data, t, test_size=0.4, random_state=0)
classifier.fit(train,t_train)
print classifier.score(test,t_test)
#混淆矩阵
from sklearn.metrics import confusion_matrix
print confusion_matrix(classifier.predict(test),t_test)
#分类器性能完整报告
from sklearn.metrics import classification_report
print classification_report(classifier.predict(test), t_test, target_names=['1', '2', '3'])
|
|