鱼C论坛

 找回密码
 立即注册
查看: 2792|回复: 46

[作品展示] 大朋友用了都好用的口算题出题器

[复制链接]
发表于 2023-7-27 09:54:26 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能^_^

您需要 登录 才可以下载或查看,没有账号?立即注册

x
本帖最后由 zhangjinxuan 于 2023-8-24 20:27 编辑

原帖如下:https://fishc.com.cn/forum.php?m ... p;page=1#pid6299362

本程序在陈尚涵原本的代码上做了亿点点改动,让小朋友做起来更快乐,大朋友做起来也不乏趣味。

这个生成口算题的代码可以生成加减乘除的运算,也能含括号。

当然可以自定义数字数量,可以是 114514 个,这样大朋友做起来才不乏趣味。

不过即使这样,还是太简单了,于是我把乘方,三角函数,对数,平方根也加入在了这里面,因为这样才能适合大朋友的水平,小朋友也可以超前学习。

算法流程:

1. 生成表达式树,一切都随机。
2. 中序遍历表达式树并输出,在这期间任意添加高级运算。

就这么简单,不过这其中还是有算法滴~

代码:
#include <bits/stdc++.h>
using namespace std;

const int MAXN = 10; // 若电脑配置好点的,可以多亿点,这样你家孩子就会更加快乐。

bool highopt = 1; // 是否支持高级运算,如乘方,三角函数,对数,平方根

struct Tree { // 表达式树节点
        int left; // 左儿子信息
        int right; // 右儿子信息
        bool isopt; // 是否为运算符
        int info; // 信息(如 + - * /, 1 2 3 4 5 6)
} a[10004];
int tot = 1; // 节点个数

void build(int root) { // 建树
        if (tot >= MAXN) { // 如果大于了,就不能建运算符节点了。
                a[root].info = rand();
                return;
        }
        // 否则,我们可以继续深入去建树。
        a[root].isopt = 1;
        a[root].left = ++tot;
        a[root].right = ++tot;
        int opt = rand() % (4 + highopt); // 决定运算符
        switch (opt) {
                case 0: a[root].info = '+'; break;
                case 1: a[root].info = '-'; break;
                case 2: a[root].info = '*'; break;
                case 3: a[root].info = '/'; break;
                case 4: a[root].info = '^'; break;
        }
        // 然后继续建树
        build(a[root].left);
        build(a[root].right);
}

void output(int root, bool kuohao) { // 中序遍历输出树
        if (root == 0) return;
        int sanjiao = !(rand() % 3) & highopt; // 为了不让频率太高,这里只有 1/3 的概率生成三角函数
        if (sanjiao) {
                int opt = rand() % 6; // 有 sin, cos, tan, sqrt, log
                switch (opt) {
                        case 0: printf("sin"); break;
                        case 1: printf("cos"); break;
                        case 2: printf("tan"); break;
                        case 3: printf("sqrt"); break;
                        case 4: printf("log"); break;
                }
        }
        if (a[root].isopt == 0) { // 特判为数字的情况
                if (sanjiao) putchar('(');
                printf("%d", a[root].info);
                if (sanjiao) putchar(')');
                return;
        }
        
        if (kuohao | sanjiao) putchar('(');
        output(a[root].left, rand() % 2); // 左
        
        putchar(a[root].info); // 根
        
        output(a[root].right, rand() % 2); // 右
        if (kuohao | sanjiao) putchar(')');
}

int main() {
        srand(rand() * clock() + time(0));
        build(1);
        output(1, 0);
        return 0;
}

当然,因为大部分电脑缓冲区的限制,这个程序若你把 MAXN 调高一点就崩溃了,这个就不是我的原因了。

欢迎大家来测试我的口算题出题器!

@歌者文明清理员 @陈尚涵 @sfqxx @Ewan-Ahiouy



求评分 (这内容太水了,估计不能精华)

演示效果

sin(((((cos(cos(tan((tan((tan((cos(cos((((sin((cos((tan((tan(((cos(((cos((cos(sin(cos((sin(cos((cos((tan(((tan((tan(cos(tan((cos(cos((sin((sin((cos(cos(sin((((((cos((tan((cos((cos(tan(sin((cos(cos(sin(((((cos(((((cos(sin(tan(sin((cos(cos(cos((tan((sin(cos(((sin((((cos(((((tan(((cos((cos(sin(((((cos((tan(((tan(((cos(cos(sin(sin((tan(sin(((sin(cos((sin(tan(cos(sin((sin((sin(tan(tan(sin(tan(((((((((sin((tan(((tan((sin((cos(((sin((((tan((((((((sin((((cos(tan(cos(tan(tan((((((((cos((sin(sin((tan((cos(sin((cos((cos(tan((((((((cos(tan((cos((sin((sin(tan(tan(cos(cos(((sin(cos(((tan(cos((cos(cos((tan(sin(sin(cos(tan(tan((cos((tan(cos((((sin(tan(tan(sin((cos((((tan(cos(((tan(cos(cos((cos(tan(((cos(tan((sin((((sin((tan(cos((((cos((((sin(((((sin(((((((sin(cos((cos(((tan(sin(((tan(sin(tan(tan(tan((cos((((((tan(((24895/tan(21443))-26931)/23647**tan(14612)+20020)**25413**cos(25648))**cos(10438)+sin(11764))**27340**sin(16270)/3605+12301)-1459)+25990)-cos(10604))**25229)+23521**10286)**26390+6374)/sin(27153)*27694**tan(18606))-32661)**cos(22237))-31103)+727)*4866)+tan(7707)-sin(18803)+cos(9006))*tan(32167)/1645+cos(30198))-21117)-8565/5396)-tan(11795))+cos(1842))/20595)*29701*21434)**15375)-30889)+32319)-tan(9920)+32546+18236)-26203)+8487)/cos(27896))/tan(1754)/cos(11109))-sin(26784))**tan(27662))-15704*sin(20458))*31054)*15496)+19610)*cos(1874))-tan(28109)+12325-6836)-19824)/2163/cos(7795))**1358)+7256)-sin(25045))**26943)+9293)+tan(13425)-24717)-9552)/8112)**sin(10955))-24123/15189*7351)+12722)*7626+5403*1611*20355)+30453)**11011)-13466)+30654+23305/1460)+14338*14941)-5868)*cos(2061))**19248+32100)**30302**5469)+12425)-sin(29882))+11391)*26583)/cos(32456))+19511)+9617)**cos(11072))-8425)+14334+sin(9728)**12267-3399*24333)**23199)+tan(18919))+cos(30721))/tan(21522))**cos(15925))/12407)/sin(1185))-4224**30776)**29122**cos(15104)/cos(9699)/6360)-20172**tan(17252)/6513*sin(22080))-5029)*11756)**cos(7649))/12056)**16353-18734)**8064+5710)+sin(4935))-19486)*tan(22145))-cos(3094)+21198)+cos(22322))/sin(21396))*18479)-22981)-cos(4291))**15035)-cos(22888)**cos(19281))+24759)/8281)**24164**30748**cos(3933))**15500)+15258)-19532)**tan(19352))**26813)+29343)+22962)**sin(23616))**7030)*32424/21060)/cos(197))/sin(22131))/23115)**1742*17685)*15099/4741)**15844-tan(19648))*14449)+2817)+30491)-cos(22874)-2342**sin(22423))*sin(28281))**sin(4130))-29041)+20244)**29737)*tan(17120))/29954)/sin(15161))/27763+16404)*30323)**tan(18950))*3052)/tan(28236))+29984)**cos(9272)**9194)*14038)*23865)/19728)**4923/919*7701)*tan(12118))-12055)*cos(21563)/31433)+sin(31646))-tan(14418))-sin(11919))+cos(18682)-15306)-12502)**28202)*4591**16336)**tan(9553))*sin(14163))+18922**18365)+sin(16171))/4383)*4537-3834)/12987**27354)+sin(13960))/7374)*23994)/4264-tan(25593)/32293)/10744)*21356**cos(15479)+sin(19600))*2125)/26601)**19399**9868-cos(6099))-16680*2015)*32007)-19794)-27161)**21500)-23072)+cos(12028))-8828/14831)-cos(1327))-30811)**cos(17154))+19895)-cos(10245))/14983)**11440-28501)/22901)-19612-cos(18309))*24284)**12563)**cos(8299)/21596)-22216)*18491*20336)+5652)*8336)+19541*29701)/5613)/22399/1624-8916)/1845+sin(19903))-sin(31629))/tan(6290))-sin(3621))*18359)**2966)-tan(28651))**28166)**tan(407))*tan(12206))/29624)*25239**tan(13104)**sin(16178)/cos(24952))/tan(10419)**sin(1546)+23905)*12286)-cos(31279))/12720/cos(29792))/11879**258**12879-24960)/tan(3919)*1448*19839)/14020)+13381)*23752+cos(22881))+13726*19835+22548)**cos(31210)*26362)/8642)**sin(15984))-cos(18558))/sin(29821))/tan(4790))/sin(3927))**6593-9999)*12598)*tan(5499))+21930)/tan(11927))**sin(30232)+3244)*sin(5593))-5893)**29466*24315)-32298)*3734)/sin(4123)**15647)/906)**24915/tan(10379))+cos(5656)+5385)+19932)*7456/12818)+tan(23345))+5987+11722+29835/406/30971+tan(12266))**sin(2488))+16047)+24083**29887/805)+3556*sin(1085))-29728)-sin(10141))*20456-27189*3953)/cos(31305))/17737)/tan(12318)-sin(208))-15643/cos(5958))+sin(19726)*19087**29294)-25312**15821)/15079+8678)*cos(31284))/4314)-sin(22506))/25758)**20487)+cos(29615))**18362)**31874)*16803)+sin(9542))-tan(2297))**31481)+13026-29148)+3968)-sin(15048))+12424**7157)+6484)-12595)/3285)*22176)+cos(20437))-23140+10843)/sin(13564)+2361**cos(17681))-26894)**tan(13051)/15929)/346)*27034**tan(15206)-sin(2058)**30448+6905)+20258/14991+26236-sin(17988))**12721**28365)-6719)+3273)-16123)**4511+2549/tan(3167))**20047+19115)-30208*7670)*18085)-20372*cos(15810))-tan(25202))/18470**30578)**30027)-4538*tan(3822))-sin(8831))+32308)-16395+cos(29456))**tan(18962))**10186)**3475**cos(10714)+tan(19666))*tan(6768))/29755)+11355/19235)/4670*10180**26403**10213)**cos(11502)/sin(15381))**5962)**350*sin(20217)+1491-30900-13940)/cos(25597))**26931)/sin(10642)*19488-32354)**tan(2828))**26412)-18207)+6717-cos(6193))-2015)-19947)+1908)*5885*22113)/9961)*16164)+tan(30511))*12877/26340)/10303)**sin(21496))-6619-tan(25530))-3962)/cos(7251)+sin(238))-16213)-sin(22118))/5525)**cos(6485)/7901)

评分

参与人数 1荣誉 +3 贡献 +3 收起 理由
python爱好者. + 3 + 3 鱼C有你更精彩^_^

查看全部评分

想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2023-7-27 09:55:46 | 显示全部楼层
《口算》
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-7-27 09:58:15 | 显示全部楼层
我只想扣一个6
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-27 10:06:24 | 显示全部楼层

难道不能口算
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-27 10:07:27 | 显示全部楼层

求助,有道口算题我不会
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-27 10:08:24 | 显示全部楼层

求助,有道口算题我不会
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-7-27 10:11:27 | 显示全部楼层
《不乏趣味》
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-7-27 10:16:22 | 显示全部楼层
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2023-7-27 10:26:02 | 显示全部楼层
zhangjinxuan 发表于 2023-7-27 10:08
求助,有道口算题我不会

6666666666666666666666666
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-7-27 10:40:42 | 显示全部楼层
本帖最后由 liuhongrun2022 于 2023-7-27 10:45 编辑

尝试使用python结果报个MemoryError。(内存错误)
readme.md,你出的数字太大了
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-7-27 11:27:50 | 显示全部楼层
手贱调成了10000,结果
(((((cos(tan((((sqrt(((((tan(cos((log((tan((sqrt((sqrt(log(log((cos(sqrt((log(sqrt((sqrt(sqrt((((sqrt(cos(sin((((log((tan(((log(((log(cos(cos(cos(sin(tan((cos(cos(sqrt(log((tan(((sqrt(((cos(((tan((cos((sqrt(sqrt(log(sin(tan(((tan((((sqrt(cos(((log((((((tan(cos((((log(log(sin(((((((cos(log((sqrt(cos((cos((tan(log(sin(log((cos(log((log(tan((tan(sqrt((sqrt((((sqrt(sqrt((((sin(tan(((log(sqrt((sqrt(((((sqrt(((log((tan((tan(sin((sqrt(tan((((sin((((cos((((((((((((((sqrt(sqrt((log(tan(cos((((((((sin(tan(((tan(sin((tan(((sqrt(log(((cos((((((tan(tan(log(sin(tan((sqrt(log((((sqrt(((cos((sqrt(sqrt((sqrt(sqrt((((tan((log(tan(log(sqrt(sqrt(((cos(log((sqrt(sqrt(((cos((log(tan((cos((cos(log(sin((log((cos((sin((sqrt(sin(((log(((cos(((((sqrt(sin((cos(sqrt(log((sqrt(tan(((((((tan(sqrt(log(sqrt(sin(cos((((((sqrt((cos(((((((sin((log(sqrt(((sqrt((tan(((((sqrt((((log((log((sqrt(((((log((sqrt(sin(sin(cos(((sin(sqrt(log((((cos(tan(tan(((((log(sin(sqrt(cos(cos(log((log((cos((((sin(log(cos(((log((((((tan(((((cos(cos(((sin((((sqrt((cos(((((((((((cos((((tan(tan((((sin((tan(cos(cos(cos(sqrt(tan(sqrt((sin(((sin(tan(sin(sqrt((sin(log(((((((sqrt((sqrt(((((sqrt(((sqrt((tan(((sin((((sin((sin(((sqrt(cos(((sqrt(sin(sin(((tan((log((((cos((((log((sqrt((log(log((sqrt((sqrt(sqrt((cos(sqrt(sin((((((sin((tan(sqrt((((tan((((((sin(sqrt(((((((log(((sin((cos(((tan(log(((((((sqrt(sin(((log((((sqrt(tan(sqrt(((log(sqrt(sin(cos(((((cos(sqrt((sin(cos(tan(((cos((sqrt(tan(tan(sqrt((((sqrt(sin(tan(((((sin(((sin((((((log((sin((((log(log(log(sqrt((cos(sqrt(sqrt(sqrt(tan(((tan(log((sin(((((cos(log(((((sqrt((((((cos(sin(((sin(sin(((((sqrt(sin((cos((((((sin(((cos(sin((tan((((cos((sin(sqrt(log((sin((sin(((tan((sqrt((((log(tan(tan(sin(((sin((((sqrt((tan(tan(cos(sqrt((tan(((((cos(((cos((sqrt(log(((((sin(sin(((((cos(cos(log((((tan(cos(sin(log(log((sqrt(((log((sin((cos((sqrt(sin((sqrt(((tan(((cos(log(sin(log((((tan(tan(sqrt(log((sqrt(sqrt((((((((((tan((cos(tan((sin(log((sin(((((((cos((((tan(log(cos(sin(sin(tan((tan((cos(sqrt(((tan(((((tan((log(tan(log(log(cos(((tan((sqrt(tan((log(sin(((sin((log(((sin((((((tan(sin(((sqrt((cos((tan((((((tan(log(sin(log((((((sqrt((sin((log((log(((sin(sqrt(((sin(((cos(((log(sin((((cos(((log((sin(sin(((tan(((sqrt(log((sin((cos((((sqrt(((tan(sqrt(log((((((((log(tan(cos(sqrt(tan((tan(((tan(log(sin((sqrt(log(cos(tan((sin(sqrt(log(cos((tan((log((sqrt(((sqrt(sin((log(log(cos(sqrt(sin(cos(sin((sin(((tan(sin((((sin((sqrt(sqrt(log(sqrt((((log(((cos(sin(sin(((cos((((cos(log((sqrt((sin((sin(sin(((log(((tan((((((((tan(sqrt((sqrt((log((((sin(sqrt(log(((((((tan(((sin(tan((sqrt((((tan(cos((((((tan(((sqrt((tan(cos(sqrt(cos((((((cos((cos((((tan(log(cos(cos((((sin((sin(sin((tan((sqrt(log(sin((((cos((sin(((tan((cos(((sin((((cos(((cos((sqrt((log(((((sin((((((sin(cos(sin((((log((((((log(sin(cos(log((cos((((cos((log((sin(tan(log((((sqrt(tan((cos(tan((sin((cos(((((sqrt(sqrt(sin(cos(tan(log((sin((tan((sqrt((sin(tan(sin(log((((tan((tan(log(sin(((tan(((tan((((log((((log(tan(tan(((tan(sqrt(log(sin((((tan(tan((((((cos(cos(log((sqrt((((tan(((sin((((cos(cos(tan(log(tan(((log(((((log(cos(((((((((((cos(sin(sqrt((cos(sin((cos(sqrt(tan(cos((((((((((cos((cos(((sqrt(((tan(sin((cos(((((((tan((sin(((log((tan(log((cos(cos(((log(sin(cos((((sin(sin((cos((((tan(sin(((sqrt(((((log((sqrt(((log(((sqrt(cos(((tan((((((sin((log((sqrt((((sin(((sqrt(cos(sin(((log(tan(((((log(((cos(sin((cos((sqrt(log(tan((log(tan((tan(((tan(cos(sin(sqrt(((log((log(((sqrt((sin(sqrt(((((tan(sqrt(sin(((((((sin(cos((((cos((((sqrt((((((log((((((sqrt((sqrt((tan(cos(tan(sin(cos(sin(sqrt(sin((((((((log((cos((((cos((((log((cos((cos((log(cos((sin((tan((cos(cos(((sin(((tan((((((((((sin((tan(cos(sqrt((((tan(cos((sin(cos((cos(sin((log((((sin((cos(log((((((tan((((log(log(((((sqrt((log(((tan(((tan((((log(tan(log(log(log(tan(cos(tan(tan(log((((sin((sqrt((((sin(((sqrt((sqrt(log(sin((((((cos(((cos(log(((sin((sin(log(tan((((cos(tan(sqrt((((cos(((((((tan(cos((log((sqrt(tan(tan((cos(sin((sqrt((cos(((((sin(tan(sin(cos((sin((sin((cos(sqrt((((tan((cos(tan((((cos(((sqrt(log((((tan((((((cos(((sin(((sqrt(((tan(sqrt((sin(tan(sqrt(((cos((sqrt(tan((sin(((((((((cos((((sqrt(log(tan((log((((log(sqrt(cos(sqrt(cos((log((((((((((((((log(((((log(((log(((sin(sin(sin(cos(sqrt(tan(sin(sqrt(sin(sin(sin(((((log((sin(tan(((((sqrt(((cos(sqrt(tan(sqrt((((cos(cos(cos(sqrt(log(log(((log(tan((log((log(((sin(sqrt(cos((sqrt(sqrt((log(sqrt(cos((((((sqrt(tan(cos((tan((((tan((((tan(((sqrt(sqrt((sqrt(tan(sin(cos((((((((sin((((((cos((sin(((log(cos(sqrt((((sin((sin(log(((tan(log(((sin(cos((sqrt(((log((log(cos((((((tan(((cos(log(cos(((log((((sqrt(((((log(cos(sqrt(cos((tan(sqrt((log(((((((sqrt((sin(((tan(log((((log(((((sin((sin(tan(sin(((((log((sin(sin(sin(tan((((((sin(sqrt(log((cos((log((((log(((((((sin((log(cos(((((sqrt(tan(sqrt((log((tan(sin((sin((sin(tan((tan((((tan(log((((tan(tan(((sin(log(((((log((log(sin(cos(tan(((((((sin(sqrt(((((((((tan((sqrt(log((((cos((cos(tan((tan((tan(tan((sqrt(((tan(((((((((sqrt((log(((log((((sqrt((cos((cos(((cos(sin((sin(cos((((cos(((((((((((((((tan((((log(cos(tan((sin(((((tan((tan((((cos(sin(sqrt(((((sin(sin(sin(tan((sqrt((log((cos(cos(sqrt(tan(cos(sqrt(((((((tan(((sin((sin(sqrt((tan(log((((log(tan((log(((((sin((sqrt((tan((log(cos(tan(((tan(log(log((sin((cos(tan(log(((sin(((tan(tan(((log((((((((tan((sqrt(sin(sin(sin(sin(tan(log(sqrt(((log((sin(((sqrt(((((sqrt((tan(sqrt(sqrt(cos(log((sin(tan(((tan(((tan((((((sqrt(sqrt(sin(cos(cos(((cos((sqrt((((tan(cos((((tan(log((tan(((((sin(cos((sin(sqrt(cos((((((((((tan((((((((((tan(sin(sqrt(sin(((sqrt(cos(sin(sqrt(((tan((((((sin(((log(tan((cos((sin((((sqrt((cos((sin(((sqrt(tan(((((tan(sqrt((log(sqrt(tan(sin(sqrt((tan((sin((sin((sqrt(cos(((sqrt((log(((tan(sin((((sin((((cos(((((tan((log(tan(((sqrt(sqrt(sin(((tan(((cos(log(sin(sin(cos(tan((tan(sqrt((tan(((((sqrt(cos(((cos(((cos(((sin((sqrt((tan(log(((sin((((((((((sqrt((((tan(cos((log((sin((((cos(sin(sin((((sin((sin(cos((sin(((((cos(sin((((sin((tan(cos(log(sin((((sqrt((((sqrt(tan(log((sin(((((cos((((cos(tan((((log(tan(sqrt((tan((cos((tan(((log((((((((cos((((((sqrt((sqrt((sin((((sqrt(((sqrt((((((sqrt((cos((sqrt((sqrt(((log(sin(sin(tan(sqrt((log(((((tan((((((sin(((sqrt(((sqrt(((sqrt((((tan(log(log((log((tan((sin(sin((tan(log(cos(log(tan(tan((sin(cos(log((tan(sqrt((((sin(tan(sqrt((((tan((log((log(sin((((sin(cos((((((cos(cos(tan(((tan((tan((cos(sqrt(((((sin(log(log(tan(tan(cos(log((((((cos(cos((((log(tan(log(tan(sqrt(((((((((sqrt((((cos((((tan((log(((((sin((tan(cos((cos(tan((cos((cos(tan(sqrt(log(((tan(log(((tan((sin(sin((sin((sin((sin(((tan((tan(tan(((cos((tan(sin((tan(log((sin(sin((((sqrt(sqrt(sin((tan(cos(cos(cos(cos(((cos(sqrt(((tan((log(((cos(cos(log((tan(sqrt((((((sin(((sin(log(log(log(sqrt((log((tan((((((cos((log((((((sqrt(((cos(sqrt((tan((((((sin(log((sin(((((sin(((tan((log(((sqrt((sin(log(cos((sin(log(((cos(cos(sin(log((sin(sqrt(sin(((log(log((tan(((cos(sqrt(tan((((cos(cos(((log(((((cos(tan((sqrt(sqrt(cos(sin(sqrt((((cos((sqrt(((((sqrt(sin((((sqrt((((sqrt(((tan(((((sqrt(tan((sin(sqrt(sqrt(log(((((((sqrt(tan(((((((sin(((cos((tan(((tan(cos((((sin(((sin(sqrt(cos(tan((log(cos((log(tan(((((log((sin((sin((((cos(((log(((cos(sqrt(sqrt(cos(((((((cos((sin(sin((log((sin(sin(sqrt(log(log((sin(cos((tan(sqrt(sin(sin(((log((cos(sin((sqrt((sqrt(sqrt((((log((log((((((tan(cos((sin(((((tan(log((tan((cos(sin(sin((log(sqrt((((log((sqrt(log(((log((sin(log(tan(sin((sin((((((cos(sqrt(log(sin(sqrt((sin(sqrt(cos(((sin((sqrt(sin(cos(log((log((tan(tan((((tan(log(sin(log((tan(sqrt((sin((sqrt(sqrt((((((log(sin(cos(tan(sqrt(sin(cos((cos((cos(log((sin((log(((((sqrt(((cos((log((sqrt(tan((tan(sin((tan((cos(log(sqrt((cos(log(sin(((sqrt((log(cos((log((((sin(sin(((sqrt(log((cos(tan((log(sin(cos((tan(log(sin(cos(sin(sqrt((tan((log((sqrt(log((sqrt((((((((log(cos((cos(((sqrt(((((tan((cos(cos(tan(cos(((((cos(log((((sqrt(((((log((sqrt(tan(log((log(log(((((((tan((((sin(cos(((((sin((cos((cos(((cos(tan(sqrt(sqrt(((((20243*(9075))-tan(7529))^sin(18804))*14843)-801)^11626)-23442)+sqrt(20354))-10283)+12728)/1955)^26264)+15944+cos(21887)/313+1370)-4281)-24137+16834)-8524)/sqrt(22911))^3687)+29020)*sqrt(13538))^4299/1682)+20971)+sqrt(20038))+20662+27346)-(24680)^31573*tan(8498))+sqrt(20127)+8316)/14058/16448)-11334)*sin(17997))*15200)*14948)+sqrt(27535)+12952)+24146/26454)+tan(15261)*29952/22949/7931)+tan(17429))*18597^log(9673)/log(14995))*(29059))-16121)+18747+13876)-24825/3279)/16719)/1655)+12025)/11701^26668-30321-11668)/20868)-31768)*8677)/17876)-18485)*sqrt(11254))*24503)/log(2136))^24566)-cos(19724))^sqrt(12452))+sin(12606))/27005)+7690)+1585/9030)+22173)+15176+30177)-7731*10007)+(10320)*log(11435))*13429-cos(6066))/4764)*sin(13995))^sqrt(17414))+18318)-12705-28440)*log(30354)*18357)+26636)*11382/3290)*18675*log(2635))*32013^31066-23528*28239-1945)+3625^30555)/cos(10384)*25667-16930)/sqrt(14545)+6738)-(464))*20801)/4958)/13607)+tan(27417))^15439)*sin(24764))-6070)*187)/27586)^2202)^26554)-31503)-31199)*12854-3406)+tan(18525))-26657/tan(13358))-13159^6988)*sin(17374)+13972*12706)-sin(15773)-32296)^sqrt(15168))+17216)*tan(31513))^31474)^106/12142/sqrt(14536))+7027)^29048/18122)/3172/sin(18384))-tan(6676))+tan(23076))/26637)+log(15349)^(20354))/3713)^11838)-cos(7107))-1072-12902)/16896*4721*31119)^30803)+(26462))/log(300))^(17442))*log(14989)/2072)*257)-tan(21973))+11296)^sin(12444))/15357)+655+sqrt(6949))^22833*24979/13066)*tan(10305)+20342)*14909)/14819)+5998)+21515-cos(7782))^32493)-7678)+16526)*21640)^29899)/20957)/18889/6802)*3262^7702/sqrt(12841)^24204/7355)^24728)+cos(114))^27261-27585)/sin(5435)+3762/1933)*22633)/12798-sqrt(1396)+23655)*cos(19903)^6290+5941)^2785)*31312*16669)+4124)^20703)^32132-sin(568))-3557*12404)+32558)+6713^sin(29727))+25419+sqrt(25954))+23992-sqrt(28823)^cos(7494))^7303)+12108)*sqrt(9236))+25188)/9644)+cos(9366))+sqrt(17220))^29672)/sin(24352)+31873)-17399)+6328*15164)-log(19143))+27275)+tan(17667))^sqrt(22916))+31928+(19367)^25894)+tan(13807))+6967)/5677)*20433)^25218)*cos(28165))/14697)^9061/32547)/sqrt(25666)*15247+sqrt(4769)-sin(25517)/26160^21604)+25726-cos(12352))+29755^log(8251)+sin(11095))*14299)+14134)^32547)/sqrt(30541)-(31020)*26088^29791+2026-6566)*log(9159)-tan(6678))*sqrt(16645))+5845/tan(15619))/32076)/sqrt(26341))/8686)^sin(25542))*30225/sqrt(26025)+22955)-(21179))/cos(20472)*10214)/22101^30925^22219)*sqrt(16531))-15394^4657/7037+27682)-tan(18370)/tan(21158))-cos(1376))+11504)*2357^1275/920)-log(1759))^16607/tan(17362))/29392*7745+log(4830))+12197)*2860)+tan(15865))+1179)+tan(17926)-cos(27262))/2268*30879+15915)-3772)/tan(23134))-sin(7337))/sqrt(3753))^21682)^6762)+32253)+(128))-(20212)+2193/14334)*cos(29528)*2327)+16999)-28927)/14090)*cos(2848))-2346)-6487)+7778)-12605-2725)^8371)-log(12068))*(11187)-12628+5553-sin(4940))-15128)+16329/sqrt(25514))*sin(12186)*31938)+log(15182))*8910)*846*23423/27084)+11895)^13617*30854)+cos(26348))^30135-cos(29140)*8366)+sqrt(5243))-14899)-32540)/8670)/(27155)/sin(12597)^(10494))-sqrt(5317))*tan(26616))/15100)+log(27528)+28363/12608)-tan(9303)*32289)/cos(28743))/4407)-9842)-9233)*17138)+tan(28673))*6383-26180)-sqrt(23708))*31361*sin(2616)+6730)/31261)+378/12820)+23203)+18063+21492)+29305+(21562)^698)^6370)-23202)+sin(3375)^log(16592))+27649)+24672)^2265+2139*(16899))/sin(17333))+27916/tan(30323))^22509+tan(20639)+sin(3223)/11828)^tan(12734)/29490)/31505^11631)*(27729))*20969)-3542^sqrt(22944))/sqrt(26244))+25150)-28236^22816)-1434)/cos(11128)^sqrt(8555))^sin(3228))+6366-11205)-sqrt(10364))+15558)^8329/5000)*7968+20554-31718/sin(19188))*cos(31381))^7684)-17076)*30170+20021)-12144)/(19916))-27071)^14655^sin(1890))-13060)^18994*25050)/log(16631))^sin(14418)^sqrt(16221))/8535)-sin(6859))/565*31449)^17847)*17004)+336)*sin(32455))/cos(3181)-sin(29711))^25432)-sin(23324))/14949)*17026-2865/cos(21820))/30020^7010)-21588)/11723)*16882)^23438^sqrt(9588))/sqrt(30911))*cos(19542))*2011)-5729)+sin(15290))/23648)-cos(32266))/sin(11564))-18072)/tan(7245)/12791)*30348)-log(31299)+5158)-19218)-cos(32128))-sin(29135))^32394)-13843)-sin(26166)/16835)+23214/log(32490))-12332/16820)+tan(24482)-1781+25493)/5145/sqrt(13526))-27510)/11774)/24666)^5084)+12356)^12849)*cos(29482)+sqrt(14191))^705)/3930)*14615)^log(15285))^10507+25448/18271)^cos(21441))*29047-19638-cos(26374)+tan(30812)/13883/cos(12011))*22053^29701)^18794)-16159)^13189)+tan(28726))*23846*6975*18540*26601)-15377)+28850)/9399)+tan(9051))^26116)-30268)^16681)^8464-cos(25860))/15651)/tan(7171))*4119^28273)^7569)/981)^16271)/log(9345))^16954)-1171*10090)^(3053))*5950+10987+28273)*log(2538)*8273*4566*4488)/32347)*31257^28270-4148^log(20037))^2775*3583-sqrt(16986))+29315)/9802)+31328)*15178)^(24251)^(10449)+14468)+24059)/21648)*19919)/21836*1688)/30489)*17747)*13471-27964+12946^sin(19705))/22205)+9723)-log(19538))-20491)^2000)*25121-12029*sin(21228)+sqrt(11717))/22206/log(18171))*11703^sin(10329))/27746)*809*(23075))*(30583)-log(7205))-19918-22698)-7105/7658^4560)*cos(28906))-25965)+19429/8232)*20811)/9554)-24411^2451)^tan(20962))+29762-sqrt(27305))+16522)/24213/tan(1179)/13448)*6005)-19584)*12825*sqrt(22671))+28444/7832-(17390))^sqrt(20730)+10590+32142/5397/19881^sin(13349)/tan(26359))-5859)/31852)-(16537)*sqrt(22441)^(25055))^9853)-(31380))+30056+18643+18254)-21590)*31682)/8739)^133)+14971)^28727)*15198)-3909/tan(17450))*24989)-11027)*9904)*13198)*14019)-sin(29926)+log(21418)*23178+(20565))+13282)+log(19935))+14248)/511)/sqrt(16145))^23047*cos(24403))^sin(9941))^31818*8553)/log(1351)+21747^log(21835))^8861)+14917^cos(29792))^776)/8087)-sqrt(12811))^15673+9026-11489+tan(9603))*tan(24843))-cos(19546))^17960)+9531)^tan(25472)/sqrt(4968)/cos(3066)+28693)^sin(26174))*cos(14472))/3790)/8768)*(27660)^cos(28020))+19269/(20582)*22326)/cos(27224))^15279)+25383)-10035)+17633^8913)/18119+14726)^15767/cos(29670))^(17187))-(4578)/30574)/31715/sqrt(4074))+sqrt(28049))^cos(19863)*log(12287))-30985)^(9751))^log(15260))-17779)/tan(10087))^log(10002))*2988)^30334)-cos(25043)+31588)+cos(16180))+log(6317))/sqrt(23099))^cos(13716)+26031)+26713)+23326)^sqrt(14194))+21950^11633-26947)*7418+log(31867))*7546)-11692-20091-14090)/sin(7891))+15302*32249*27250)^20798*log(2018))+5071)*19883-32668)*8680/20120*log(6649)/24312)/2122+6736)^sin(5496))*16071)-log(10040))/(25271))-cos(11255))*3694-sin(22547))+25846-2569)*23557-29987)+17541)/28250)^12379)/21900^26444)+sin(9536))+27706)*17790/23817)+25234)*(2796))/tan(20141))^22001)+(28093))*28157)-25857)/27802+21524)-5699)*19342)+18200)-5480^28188)^17862)^(21351))^tan(32473)*2295)/26861/8969)^10219)/sin(31766))+8654)/10735*17885)+13458)+sqrt(17069))/sqrt(25757)/tan(18742)+28319)/11644+log(10634))^tan(31136)-12817)/sin(28242)*10693)/cos(1017)+30751)/tan(23064))^sin(25822))*11944/24167)*1414*sin(5124)-10285)*log(2867)*log(10318))-(20587)+9212^9979)/(16534))^30961-14732)+3883)*(2732)^6912/14763)+(9765))-8437/25270)*28180-25738)-22567^22083)^sqrt(30531)-4022^11192)+24723-tan(15496))+14729)-20119^sqrt(28462))/sqrt(8795))^sqrt(28013)*13337)/sqrt(10076))-31471)+11924)^9526)-30348)-(25866))^11138)+13813/log(502))^3347)+19148)/12069)+sqrt(14720))*1133^29983)-16462)+4574)+(8963)-(16515)+3559)^10750)+10020)-24801)-tan(28617))-24483-1938*sqrt(451)/log(29668))*5968)*11221)/27996)^31025)/15207-32469)+9416)^(30439))^13970)+4008+19861+17394)+(28002))+13481)*cos(6273)/29345-31542)/log(25802))*sqrt(1413)+5279)-13919/15147)-log(10515)*sqrt(31524)+16257)*22763)*(22173)^(18284)/8252)*(6462))+tan(21590))^sin(24425))*15628)/19391)^(31804))-6837)/7790*sqrt(26888)+28246)/15306)/21829)/30080)/14394+2421)*32379)/1653+5587*7304)^10731*(7531)*12129/(13776))^(10367))-19891)^30913)-12358)+1429+24639-5615)/log(25481))+12200)^27060)*26825/2700)+5164)*1729)^11286+652)^12985)*log(12976))^16326)*sqrt(30278)+27500)^tan(27706))+2683)^18790^sqrt(3211)*7328)^5193)^22594-25447)*29943)*tan(16058))/24520)^sin(21639))/13763-log(15894)/8629)^16130/(5320))/14305/6409)+12077)^13597)*sqrt(10916)^21175+cos(9334)/25986)-753)^log(16032))^sin(28304))*6387)/417^cos(3266))-26065-19838)^22368-27309)+728-21841)+tan(6508))-log(13623)^sqrt(6514))/13847+cos(29593))*29297)^15039/4741)-log(15257)*cos(10202)*656)/21039*sin(18810)-24786)*log(21524)-31649)+sqrt(14704))^log(31057))^18868)-sin(29867))+31445/216)+tan(23611))^tan(7420)-20590)+sin(18856)+1338)*30450+9712)*cos(30771))-24747)+21169^tan(24258)/9936+4564)*12147)^517-29106)*28526+sin(18207))+(26578)-32539*log(15111)*(30748)/log(19394))/tan(22477))-26533)-log(359))-26804)*9154)/cos(13228))+tan(17635))^tan(458))*7964)*6657)-1009)/31925)+23391)*24176)*19009+tan(28979))*8414+14667+31464+log(20949))/cos(1139))/26196)*13234)+4614)/1395)/6877)^sqrt(31417))^27977)/18401*cos(10030)+(27190)+(13250))^16098)+(18215))*20120)^16376/cos(23409)-26151/(27347))-31193/4948)^23084*22267^tan(2815))+21583)^log(23099))*log(11537)*sqrt(10289)*14231/13314-30749/log(5165))/2441)^1212)/6524^16292-tan(31132)*31061)^6268)+sqrt(10887))+(1685)-22990/(4134))*27265)*31482*25572)^tan(12123))-31429)*3528+sqrt(14572)-32547)/14601+tan(31592))^25346-25409-13266-10976)/13666)^2315*11763)-13127)-3094)/tan(14456))*31568)+tan(21883))/11986)+15227)*6888+(15894))^23324)/20367)^12819)-9117)/sqrt(14767))^tan(21907))^sin(19719)*5371-17186)*log(13273))*2209-3118-22469+7802)+2403)/6465)+3788)^14828)*tan(25529))^tan(14714))*175)-sqrt(19414))+22912)*11988+sqrt(4304))*28194/4296-27567+31327)-sqrt(30804)+10201)-26311)-9338)-sqrt(4891))^sqrt(19061))+(27491)*409/log(10790))*11357)+14799)^32298)/12345)*3351)-3083/tan(17016))*27008)-log(10477))/21189)+19409)/12323)^15161)/16005)*8424)-26394)*30176)*26920^tan(9592)^log(3907))*4637)-13199)+tan(20778))/12978+24192)+sqrt(11160))^19897/6728)^28214+3661)-sqrt(16468))^391)^19850)/(14940))*16964)^15524)+24492)/9928)*19662)/1246)-cos(18865))/12765^7259)*24335)/3804)-23657)/20182)-cos(20609))+16924)^cos(17705))+16726^22018)+tan(28885))*30850)*sqrt(28925))*20795*10979)-26737^cos(25376)^24637)-sqrt(19421))+8389)*(22695))/21341)^27030)+tan(2956))-log(20663))/(13634)+(3050)*(22987))-7823-6460)/4535)*25714*cos(5808)*9175)*26409+6542)*5953)-433)*28987)-cos(18881))/sqrt(28593)-cos(16520))^21114/27119)-27550)-16023/cos(27916)-cos(7483))^1270+9251^17906*6962+cos(348)/6993)^(11658))-17989)*32461)/14906)-20824/1661)/13187-21313-tan(6917)+15466)^log(25881))/8101/sin(168))^cos(24669)-23281^sin(30802))-sqrt(10821)*8663)/cos(20435))^(4349))+4243+6976)+sin(9942))/26991-30979+sqrt(28124))/tan(26500))-26913)-29437*23036)*17721*22794-14957)*10097^13772)/12213)/9086-29254*tan(23409)+sin(25494))^29605)-12207)/(17886)-14238/(19426))+cos(32572))-20141)*sin(13837))/sqrt(2115))*7250)/cos(5378))^tan(19848))/14505)/988)-(23661))-tan(17515)/5838)/8766)/sqrt(21266))/30304-7559)-log(7562))/cos(775)+4145)-9543*4087)^29437*15834^10725)/tan(18063))+14883)/(32483)*sqrt(7583))^22567+2887-5356)-27998/10388)*31550)^sin(16522))/6716^sin(11292))^1671)/16465/tan(3139))*32555)-log(6699)*17970)-631)*9799*9191)/22280)/17431^2630)*28045)^log(18541))/cos(30497)/tan(1215))^sqrt(18344))/20690)^sqrt(16404))/4286)^18271)^24015*log(3833)/sqrt(29628)+7068)-9399/15780)+29390)+15725)^log(8560)*(25400))/26652^sin(32682)^30593+tan(233)^sin(19605)+16856)-26989-tan(27654)/2529)/19021*23104)^6454)+10391)/2965-3431/11522)^11953)/22805)*6340)-tan(30099)^16957)^20206*15618)/tan(12733))^(25685)-sin(28964))-sqrt(6182)-18749)*22608)^17920)^26215^sin(23103))/2874)+28594)^17728)+16420+cos(3970)/2363)*11459)*(30593)+cos(243))^19082)*4912)-875)^25829/14309)-28358^14322)*23221+(24715))+sqrt(2521))*3563+12402)/sin(28824))+log(23845)/25587)^cos(12249))*6696+(25698))^20656^tan(14212))+(6591)/log(8473))+27226)-tan(29790))/log(23017))*16309)/tan(10106)^tan(20314))*cos(31261))+4829)-sin(15602)*25445)*cos(15591))*22785)-log(7486))^log(3993))+8519-sqrt(51))-cos(31993))*sqrt(31155))-11092*23609*163/5319)+8228)+736)*sqrt(30625))^50)*14576)+17043)-18565)/log(21201))^4468)*26411)+29328)^sqrt(9840))-21909)/tan(16649))*18549)*30597)+29254)/8802^18528/11551+tan(19884)/18139)^log(13623))^23833)*19072)*22870)+21792*8339)/6838)*3083*31043/3234^9564)+30426-13009*9031)^964)*12255-(22853))+20638)^23013)^sqrt(21064))+17898)*18520*tan(3583)*sin(26467))-26781)^(22379))^9086*sqrt(26107)/(6612)+32264)/sin(15649)^15333*19935)+sin(26062))-sqrt(2651)/tan(5590))-3438^2109)/9210+22904+log(22356))*6509*7174^sin(1468))/cos(20362))-2816)/17644^28017*tan(24439))^15189)*29659)*sqrt(22))+11118)/9470)-cos(17007)-5356)/377)-log(8821))/cos(5005))-27728)^9557/6666+24462-cos(23368))/7613)+9760)*cos(2975))+21852)+26348)+sin(3481))^20583)/18599)+11869)*8335)*29675/45)*tan(31701)^19781)+23215)/111)+sin(27555)^349)*13342)-(4669))*24102-tan(11083))*17964)*28620)^log(16529)+28681)-sin(7226))^18440)/21227)+26892)*sqrt(7482))/3115-sin(3930))/32376)+19731)/(15247))/5792)+12688/15687)/log(8640))*17894-27504)-sin(28883))-15062)^22969-cos(9214)-14167^12802)^(16978))-29982)/17270+11878)+3354)*28197-128)^25130*1901)+15249*(27470)*4044)*tan(32414)+30455/29294)^31159)^(16700))*cos(13116))/8577)-28696)-(17812))^sqrt(6408))*7136)+log(28909))^6519)+log(10104)-cos(10886))+3678)-32574-27923)/sin(24874)/3921)*23562)+19712)/7851+32313/23377)/sin(9334)^27825)^6702)-cos(27542))^tan(25715)/658/24131)-30839)^log(29617))*28530)*4884)-1517)+27862)+12207)-7838/sin(4304)+3306)/12668)*(1620))*22681)*log(26127)/3275)+22383)/log(30316))*10860)^29297)+27013/25942-9067)*5764)*cos(12125)/sqrt(24531))-10532)-6664/2562)-13971^11801)*14283^21014)*1149)*log(13091))^14478)/2921)/tan(25589))+14252+29285^30410*2394)^31263)/22369)-(30237))+26323)+7325+22379)+30382)/log(15692)^498-6515)*sin(21957))-(16059)/30407)*20427)/(29563))-9640)*31512)^11213)+26571)^sin(26092)-16361)/13508+3564)*tan(23225)-11573+tan(1546))/sin(23006))*sqrt(5594))+1064)*14445)-11332^cos(13372))^29070)*31447)*6257)-23470)-sqrt(9354)/7727)/20677)^17893)/sin(15755))/log(6266))^log(11578))+31939+10620)-cos(17222)/sqrt(58))^(11225))*(15675)^22856)/11700/(11050))/9549)*30532)/tan(14446)/10033)/32208)-9261/14749)*2598)*9904-9358)+30387)+sqrt(2686))^sin(10270)*7464)-2424^689)^15166)*18652-cos(20060))^sin(30271)/19232)-17868-3339)*26613)*498)/15806)-3907)*25964-sqrt(13940))/28097)^cos(6626))*27604)-19884)^20754/31812)/2543^log(25818)*sqrt(29504))-10699+25440*22446+log(11663))/4543)-sqrt(31014))-sin(30393))-sin(21402))-sqrt(10585))/23396)^tan(546))*4925^23578/10339*log(15514))*sqrt(2994)+sqrt(22113)-31961)^10897)-sin(24570))+24125)-log(14700))-20906+18559/11904*sqrt(16754))-sin(3181))+log(26615))+2069)*5883^17981+26507+cos(28051)^cos(30737)/13193)*7737)*15633/24894)/23110)/18295)*7229*6479)^32412)^3353)*27304)/10840)-sin(18399))+26740^11876)^27640)*12738)*7876+11985)-734)*sqrt(7623))+cos(23755)-12724)^31116)-6394)/(13755)*3721)+22107+cos(10719)^2390-3099)^sin(21184))-sin(15017)-cos(5460)/15441)/6093)/29612)+log(13829)/19019)*sqrt(9211)^6677)+cos(6711))*28333^15910)^18137)/28250)/tan(32315))/log(6617))+sin(2539))/17122)/18087/4300*tan(19890))^12781)^tan(11686))/sin(5547))-3770)^2086)^17993*17433)-log(15274))/(29929)/cos(20619))/12789)/cos(20854)^1448+log(22311))-26076)^2005)+28813-24492-cos(5871))^8694)-29280/cos(24786))*log(6614))/14190)-log(17324))*log(29455)*7941)-2422)*26909)+28518)+sqrt(9789)/14419)/25389-log(28800))+19286/(27925))*sqrt(255))-27133^20541)*log(19332)*23179)^18956/2105)^cos(16472))/13820)*22841)-sin(2162)+32680*23638-19591)+16819/18341)^tan(8540))-15807)^26479)-log(15240)-sqrt(8881))/32263)-18434)/27337+573^30390-31290)-22674)*sin(8146))+3175*1046)^6003)+cos(5648)/sqrt(14413))^24269)-19799-32390)+log(19398))^31762^sqrt(13239))+16665)^4658*sin(12439))^26637)-(29354)*17669)^sqrt(10192)+8332)+1779)+1563)*17657)/6414*22962)^21580)^5466*19534+tan(21258))*11841^(14282)^cos(19799)*11046)-22405)^23922^21820)*log(4383)-29663)*18387/sin(22794))^tan(14624)^27872+26635)+15355^5576)^sqrt(21944))/851^29164-16591+16718-205*(9745))*22253+16015)+sqrt(17533)^(14824))*tan(19191)/(28421))-15252^12395)^log(29772))/cos(27564)-32245+sin(22922)*23663*(27650))^10482+sin(20952)/4085)-25438+22358)/sqrt(10885))*30370)*sin(2178))/23209)+19852)/sqrt(30415))*31603)^(6575))^29229-26638)^32137+tan(14386)/13726)+sin(6417))/28610)*27649*11262^sqrt(27848))*tan(9 
07))^sin(9017))-32138)-21194)*cos(2210))+24515)/tan(25619)^7926)^10246)+sin(27678)*7344)*1114*(20848)-(19807)*(8624)/14164-15830)+5750/16594)^31478)-24333^178+25017^sin(7599))+log(31198))*28040)*4250)/log(10536))-9821)-13712)-tan(8504))/18797)^tan(10870)*26832+32274)-12109)/25289)-25661)^30682/29187)-11704)/(24703))*10538)*(13334))+3261)^24053)^17011)*sqrt(3965)*28673)*sin(4601)/21046*sqrt(3335))+sqrt(24619))+14693)/log(23926)*11002)*31350)*sin(29781))^23661*14074+sin(29447))^3887)+28542)+32557)*4477)-log(23777))-tan(24683))+cos(7837)+23497*1642)/tan(17352)*tan(26846))^25408)/log(29596))/cos(20143))/14576^26606)*sqrt(12576))/cos(13494))-10086+tan(17966)*30650/(8734))+27592)+25208+14542^log(9805)-27959)+1913)+21540)/8830-cos(17999))*27241)^23272)-4280+16466*log(18841))*1013)*14076+2434*cos(22859))+13651/tan(6851))^(10958)+29383)*18173)+18600)+177)/14763)*25320)*tan(17505)+15192)^cos(11139)*(9794)-13555*10755+sin(19865)^26615)*8486/sin(21933))*27919)^18554)*sin(20535))*(12015)^9514)/28354)^8910)/21282*log(8177))-sin(5779))*30767)/11460-cos(17655))+21502/29620)+29468)^19061/sqrt(12331))*13947*19745^23707^854/24924)^7065)+20264)+tan(12312))*29470-sqrt(11902)*tan(3385))*9192^22250)-log(27045)/15198)-sin(16609))+14079)-7330^sqrt(16371))^sqrt(5318))^tan(26536))*4582)+9646)-323/32363-6442)^3188)^tan(14709))+27012)*4369/log(7281))/14509-7058)-cos(13320)+12135*5745^8079+11377)+9286-(23492)-10501/13314)*4350)^cos(15784))^(29823)*16999)/18065^log(24800))^log(3134)*(3887))-23404)+2810/tan(17710))-cos(27365)/12279)*25741)/2073)*sin(13181))/8555)^12480)*15129)/log(26611))-(24292))-cos(7691)+tan(24403))-(7982))/sin(5303))^log(5186))*14050)^26154)*25093)*tan(9167))*1810-18774)-19600)+cos(31294))*cos(19151)*3387)^cos(9934))*0^log(26973))^23135)*sin(7228)^872)-17737)-cos(24681))*22517-5370)-14239)^13445*31107*30949/19293)*28426)^19445)^20942)/tan(19752))/19547)+sqrt(29489))^26831)/830)*21771)/sin(908)-14016)-sin(8620))-20804)*sqrt(14232))/4789)-20161)^2921)+14397-10695/19394*9722)*11020^9240)*(5599)-2232)-31439/6929+sin(4966)^10506)+3685)/17646*(8503))/12704)/25037)-cos(31101)-log(5240))^log(19798))^13696)+29730^1161)*6491^cos(18436))+30495)-28986/cos(658))*19902)^13330)/6460)^4664)/6920*7615)-sin(5334))-sin(28104)^13443)^1808+2265)^3611/14766^13146)*1494-29140/23992)^15330-26510)+20219)-25235)^sin(28320))^18602+sqrt(2024)/19018^sqrt(2627))-sqrt(24237))^26467)*12948+31605)/21030)+sin(26633))+3753*tan(32607))/sin(26410))*2802)+13140)+20336)/log(2561)/400)+26954)/cos(14938)^5152)+11994)/31162)+log(20062)/23895)*17322*26917)^30922)-log(27980))-31332/21616)*sin(16064))-sqrt(24872))+13785)^log(9272))*29496-22928)*cos(1899))-2661)/3656)*log(1239)/24689/tan(32258))/2468/6514^29405)^log(10572)-26209-sin(21676))/1308)^32264)^(16382))*20891)+15677^tan(25626)-4260)-19538*10070)/13908+2733)*9560)*31523)/(396)/11108*14681)-25841^14833)-27403)-tan(24860))^21946)^23199/11811)^11701^(7826))-9072-sin(23527))*13564)^23361/26901)*15898)-573)+28722-(11110)^sin(3586))/32561-8076)-(26103)-21173)+26925+31134)/sqrt(20204)^tan(29843)/9882)+11392-tan(30734))^sqrt(10772))^sin(4261))^cos(30455))+1566)*8644*1335)-17050)-cos(29289)*tan(3467))*21800-10547)+2716+log(29490))+25264)^log(26984)+8922)*cos(26147))-1054)-3739*sqrt(11788))*3696)/32460)*20494)+12408)^tan(8471))*sqrt(11858))+27467-16534)^11653)^(11258)*32195-2590/25688/2676)/8629)-sin(1894))+15209/31179^21073*25835)/4874)-26520/23326)/tan(17197))^cos(16524)*tan(28534))-22169)+19137)-8709^12213)+31)-18081)*cos(8015))/22099*tan(23820)^14534)*15444+31271^cos(293))/tan(7417))^sqrt(8329))+sin(5216)^29235/19942-14265)+11822)/log(28401))^16498)-tan(20484))-5823-tan(7464))-(2382))+22823/13677)-sqrt(25369)+24780)/10494)^19510)*28699)-6386)+26951)+15980/cos(14469))+(14798))*(4776))+12205)+26830)/sqrt(14344)/sin(6388))^cos(3862)*5107)*31166^11434)^25268)-8473)+7563-13758)-log(26427))-(15476))/sqrt(14313))^log(27548))*sqrt(22523)^20327)+sin(31418))/11883)*cos(29455))/17389)^tan(31521)+sqrt(1422))-3544/sin(5943))-cos(2454))^26481)+log(19882))-tan(32663))*sqrt(20538))/11906/log(22724)-10652/11111)-24445+4998)+20607)*28812)*9453*15838)+tan(13757))-5944-sqrt(9200)/1284)/cos(15366))*30836)+cos(3642))^23911)^(10582)-(6230))^5468)-14567)+21602^11731-sqrt(9030))-27972^16693)+tan(23765))-31755)^24278)*28955-log(22157))*cos(11493))*17279+27070)+cos(21515)+27769/4575)-tan(14223)-tan(7948))+20572)-28870)^28519^7443*31701)-15087)*sqrt(29550))^4283)-11237)+27371-32573+log(1355)/17540)*859)/16191^6283)+17198)-cos(18274)^30557+5846)*sqrt(15006))/22362)^sin(31962))/7537)+tan(15322))+cos(1478))^1915)-sin(14107))+20591)+sin(30856)/7660)*9957/27134)+log(27221))*8543)+21828)*27383)*8293)+15478)-4965)/cos(11429)/26735)/sqrt(14691)-10432)^9835)*sin(13012)+846)/24304)^6733)-7451)+22262)-32706)-27313+157/26268)*31116)-32103)/22913)*29981)/7616)/log(20456))-6635/11358+cos(11712)-8411)/(15729))*tan(13036))-sin(10740))-21214)^sqrt(12495))/sin(17636))+sin(5915)/tan(27778))^log(25051)-21521)*log(11742)-tan(22935))-sqrt(3003))+29525)^10411)*log(20907))-sin(4949))*4426)^9152-1997^2055)^17960^sin(17286))^sin(1943)^7320)*14570)-5409)+25451+sin(11375))/24492)*23877)*log(6140))*8451)/8024)/18763+18704)/19347)-3713)/13956/15237-1815)*sin(24463))*tan(973)^log(12434)-sqrt(13942))+sqrt(13853)*8547*log(1616))-29433)/27551+21241*16761)-32512)/1864)*cos(22536))/(25711))+sqrt(20724))/27947/28263)^14208)+19068)^2208)*25371)/26216-sqrt(28660))+30185/9584)+5911^13339)*28437^log(4169)+23989)/sqrt(11275))-cos(37))/23988)/tan(12772))-16239)-tan(18030))+30913/18757)/10480)*16190)/8597)*31549)/23280)-log(27074))*6074)+4601)-sqrt(7291)^16423^sqrt(16057))*11439)-29306)/log(19456))+28907)-5927)/10538)-sqrt(23016))-sin(29836))+14971/cos(4557))^log(4200))^18193)^2843)/18592)^28187/12987)*cos(6163)*cos(5900))-29455)+25197)+8081)^17952)+(31087))-26555^19617)+30015)/351^26435)^(572))^sqrt(18710))^29736)*24384-22401^sqrt(1745))/8853)/15452)+10562-sin(28559))+669)-12486)^25794)*28691*cos(28737))*389)^28605)^(30908)+30136-(15884)^20905)-4535)+24266^5646)/572)^tan(32627)+7034)*16787/302/2901)+sqrt(13799))^12108)-6976)*cos(17582))*sqrt(24436))-27939)+125-19946)-22823)+cos(32535)-4032-log(2570))-cos(15183))-6215)^31606)/15956)/24682-cos(27212))^cos(11173))+31816)+log(30533))*32460/302)*tan(26583))^101-20300)^24143)^tan(11728))*tan(15014))^3910^(6251))-16027)^17186)+cos(23676)^14094)+8489)/sqrt(27732))/18827+9260)-29227)^4222)/30403)*12713-25474)^25415)^11574)+6174)^20471*cos(1705))^12303*21211-14125)+26378-14374^sqrt(32040)^(13779))+8873)/19921)+5329)+(19998))^60)+(29948))+tan(17889))+cos(5239))/14552)-sqrt(24444))^sin(9133)/sqrt(5233)*6416*6560)/29460^log(509)+15713*(25865))^27142*cos(2785))*(28110)+tan(13756))-2115)/23654)/23751)/1398)+28005)*12625-cos(19791)-sqrt(28992)+20513/31765)/25694)*21826+31434)+327)*10628)+(23260))/sin(28950)-(30290)+(31440))/11507)^cos(8997)-30828)^cos(30704))*18057)-20927*28617)/sqrt(10393)-log(3985))-2014^13070/sqrt(25130)-15361^19820+32520+12428)/8488)+30541)+5790)+log(18012))^(30018))+14496^log(7940)^14412)/11594)-22850)*3122*1990)*27919-13716)-12693/cos(16595)-sqrt(15754))/27519)-19204)-12092)^32111)-log(22709))-4597*log(28399)*16386)*log(20025))*13041)-23459)^3628)+7457)+14149+log(9151))^log(15822)+log(24731)+14075)^(632))-21333)-10542-(26376)*25914)+8591)^sin(27970))+22471)*74)+7101*25315)+30630)-sqrt(5801))/3561*tan(9922)/cos(11808))/31035^sqrt(12153))+cos(21628))/8939)/tan(296)^(17413))+29727)/1394*2435)*15974)-24811*sin(26757))-cos(11306))*6671/3413)+tan(1615))*sin(17901))-24225)^18514)*log(137)-1522/tan(441))^26577)+28910)*3159-6924)/cos(31881)-tan(24047))-23578)-7863)*29430*26535-9270/log(4560)+17822*16657+cos(9231)/log(27969))+9369)+18809)-12048)-8918)/13904)-23088)+5011^30868*21893*cos(7300)+(26881))^11853)/log(28820))/31727)/log(2362)^8561)^28152-cos(2191))^14647)-25383+14864^24022/17646/29852*25123)+24963)/(4725))-sin(7579))/24739)-tan(28369))-sqrt(28779)/sqrt(4447))*32430)/16878)/9108^21925)^sqrt(28378)*(14254)-30659)/8197^1330)*log(13697))-22525)/7553)/sqrt(12412)*19875*sqrt(12763)*22623)*(6334))-29586)*10288)^sin(12340)*1792)-21701+22764)-6210/(31314))/10651-14912-log(4099)/3601)/4754)*(21251))^tan(2566))+5479)^log(21945))+21077*13562)+4113*sqrt(4200))^19074*sqrt(23305))^23653+12590^cos(4905))*19303)-(19091))+cos(19979))^5789)+554)^29995+(10975))*3723)/tan(604)^tan(735))*1059)*29661)^5710/13707)+29143+cos(9695))/27184/27250-sin(30395)^(3232))+13535)^28618^4034-15004^sqrt(25342))-log(21372)/22468)/20887*cos(30792))-3877/tan(4979))*11980)+sqrt(6948))+13664-14736)/8775)+tan(32378)*1095)^sin(19295))/log(13712))/7622/311-4440*(17801))-log(32619)-468)*4127-29593*sqrt(29001)^tan(17997))^18870)/12810)+29585)^2274)*7922)/28592)+log(17880))+sqrt(9891))-25899)/9932)^19051)^sin(17786)*1080)+tan(21295)/log(13283)-7019*12442)/5027^12537-15131-sqrt(5624)-(31366)+2715)/tan(2447))^tan(1484)+20920)^tan(26687))/sqrt(16695)^32347)-21944+11895)/sqrt(9771)-7658*11273*log(11205))+20404)-sqrt(22063))^6363)^1969)-11022)/29702)-14311)/10266)-7020)+20325)+15515)*202)-log(23357)^14226/cos(32119)*333)/686)*28563)^20151-5378)*22384)-20199)^28722)-26994)-18875)-(23155))*4738^28385)-sin(17043))+sin(27071)*14181/18211)-10058+11362/29027/5809)*13894/9147)^18097+log(27644))/8452)+sqrt(25826)+15190/sin(12545))+cos(1885))^sin(14046))*18060/(23326))+sin(14344))*24857)*sqrt(14185))+sqrt(19748))*23137^log(15889))^19646)-8109)-25960)/26191)^1088+17328)+2061)/1949+25829)^13138)*26283*log(15476)*18577)+9471+(20946))-cos(30644)^sin(26866))+cos(29882))-23113)*sin(22679))*sqrt(13224))-14257+(26195))/31464)*10666/11797)*11314)+6000)-19941)/log(1832))+sin(13802))*2226)*(26406)*11160)+21063)-2008^6457+523)+5921)/13804)*(6483))+25083-22751/17739+429)*log(10436))^sin(15162))^22359)*sin(2162)/9467)^16196/cos(25197)+7643)-19458*29352+13335)*13720/cos(28121))/9267)+25474)+sqrt(16243))/23351-16787)-tan(18482))+4912)+12762)^tan(16991)+18676)*21431)^17179*17496/5908^log(3445))-18629)+15599)^10705)+cos(5119)^log(23591)^sin(25607))*3598)*sin(25336))-25448)*15355+24138^1590)+26907)-sin(23267))*30418)-19744-(4627)-log(22803))-14901)*19802)^9593/2277)/31225*30885)-23323)/23481)^22412)-18944-tan(25607))+sin(6201))*sin(12669))*19987/24921)+17890)*tan(28908)^2766)^15697)+log(29120))-19264)-2638/(6825))^12408)-19480+3328)*20005)/396)/15235)^(9992))/5739-30683*sqrt(13427))-sin(19684))*1557)/19303)-32623)^4940+(21509)/sin(14427))-1417)^cos(9821))^1528)^(20301))-28560/15351/sqrt(10590)+sin(6848)*17798*log(1380)-3690)/15853+8788)^(25658)*14693)*tan(28867)+20413)^26242/32327*32044)/tan(24209))^19993*31368)+8594)-(3875)+sin(10071)-24884)*sin(31906))+7676+sqrt(13039))^log(19774)^26191*18641+sqrt(10006))^3606)*23066)+8115)-3048)-8829)+22161)*30342*tan(14087))-(21913)+22038)^2740)^10885/12868)^17634)*12579^cos(23300))/16554)*6218)*8292*8475)/16915)^tan(27456))^cos(11053)+23036)/24317)*17436^sqrt(32521))+sin(31572))*31598)+(26525))^15182)/7795^9608)+tan(23850))/29775)^18093)-21086/2142/30420)^tan(26368))/23814+31684)+log(24519))*27383)^31728)*26847/23600)^18125+8309)-20846)*(9572))/21206)/log(29875))*24045)^3448+30235-27545)^log(32095)+(12284))^25668*5950)+12875)/6886+29372)-14711)*12549/(973))^18703)+17064)-13102-23896)/sin(28823)-13018)/9342)/(24821))^log(1879))*sqrt(4366))/3265)/24782^6695)-sqrt(27857))-23328)+30201)+27154)*sqrt(7697)-30370*24302)/8444)-tan(14127)+14323+8767)-cos(14727)*23893)^12387)*18819)/sqrt(7736))^31498)*tan(25137)^cos(18579)-17366)^260)-19978)^25850^17171+10557)*cos(31181)*12710*13679)-(28745))/21649)/29412)+cos(22872))^14566)*7145+32395^16790)^tan(19925))*9831+sqrt(27766))*5094*13800)+14174+11064)*6885)^sqrt(3677))*16364)/19724)-12080)+tan(24426))*sqrt(12600))/cos(8459))-sqrt(15306))/7961)/sin(17401))^log(27810)+25022)/22102/log(22840)+sqrt(22850))-32517)^tan(7238))*sin(22614))/log(27225))-7337)+23515)-11856)+3970-2091)*sin(6054)*cos(21058))/sin(9976))/7203)+8172)/sqrt(29482))+cos(1105))+31782)/sin(28411)-13039)+sin(20329))/sin(18412)^8126)+cos(4770))+20380)+sqrt(2482))*12944)*sin(29699)^30520)^25566+5198)-21575)-sqrt(17201))+cos(16866))^7088*9240)-17175-4194)/28889^sqrt(24798)^23878^tan(16537))-4908)+21309)-9053)-6905-sin(29026)*5854)-19185/9489)+18393/20339*7810)/7860)+14639/tan(12021))/31405)/23128)/21776/12592)-11172)*29884)-sin(332))+12418^log(16092))/12238^sin(31021))+14304)/sqrt(7429)*29899)^22279)^13849)+63)*16808)-23568)+30303)*6795)/1457)^27250+515+sin(127))/sin(12656))^26015)/20352/11327)+32208)*27877)/sqrt(25275))+11432*11906+sqrt(9282))^(17033))+(21710))/21408)/32633)*26482)-32681/20112)-17253-log(1973)+(15371))/7724)+log(12686)+25739)+sin(29909)/13855*4602)-31920)/tan(26987)/26002^3910^sqrt(18464))-2661^4361+6389-cos(24862)-sqrt(3720))/cos(17287)+16391/15995-21492)*23289)*16845)*cos(25365)*24990+(21457)/13565+9886^7425-30706*3330^31647)*2065)+29900)^26517)+sin(22204))+7025)*sin(7368)/sqrt(22673))-sin(6969)^cos(4325))+22502*10243^sin(12477))*12810^1956^tan(13953)*tan(9814))-32581*25123)+31678)/1726)/cos(17145))-2181-21339)*16861)/25853)+sin(23705)/3071)+20366)-4685)*(22970))-27817)+28582*3327)+29940+sqrt(9285)+11059)*14457)^18537)*22398)/31489*tan(13794)/cos(3571))+16596)-14179*sin(9430))^11531)/5870)*tan(13615))-23646*sqrt(24554))*cos(11569))+13323+12319+13293)-657/487)^5585)+26942)/12967)+30667)-16115)+sqrt(30129))+(32004)*cos(13267)^log(31421)+12012)/22214^13432+29783)-tan(24523)*14953)/14608-cos(8520))/(19715))*10719)-2968)*29745)-27909)+5858*6066)/10171-sqrt(22309)+9609*29418*13774-11771+32025+14909+sin(20228)*2313^6942)*26844-26205)-sin(8607))/23739)/3117)*9524)/18172*log(12863)^30995)+log(23409))-23990)/12536/cos(26223))-16385)/sin(28252)/30540+4327-log(5507))/1881)^5893)-tan(19430))^1860/30235)/31213)^9187+sqrt(21102)+(7029))/29851)/30183)^cos(3964)^tan(24386)^31628)+cos(8265))*12273+1868)-tan(11894)^12476)+sqrt(1098))*30060/11736)-13197/24113)*4338)*(28374)^2085)^8947)+24390)*324*24277*25140)*4048)+31745)-17363)/17634)-32534)*902^log(23423))-(26727))^29988)/cos(7870))-tan(13291))-(31267))/9009)^sqrt(19993))+20379^tan(10009)+9343)+cos(6364))^19849^cos(13288))/1667)*sqrt(1211)/21100)+20734)-7238)/11177)+5946)*(32520))^log(8459))+25583)/16620-6060)+28210)+11899-25985/log(20091)/18524-24443)^25157)/15905)-2000+tan(13611))+26451)*21983^log(8222))^20715/23641-cos(15164))+cos(19202))+18069)^667)-29687)+23178)^13837*30779+sin(27711)/30331^8986)^183)-11558)^18674*32628*tan(14003)^22356/24135)*6942)-log(2809)/13816)+15414)*sin(28405))^sqrt(13502))-32261^cos(29761))-30090)*cos(30503)+log(3482))-13648)-sin(1581))-24587)-16321)-sqrt(8347)+log(26186))+25595)*tan(10333))^(26057))^1273-log(31615))^19550*27225-sin(5328))+log(9635))^10807-66)/30715-tan(29618))/9874)+28630)/12943)*578)^12610)/sin(22764)^sin(22300))+880)*13945)^12094)-8578)^15981^12347^log(22032)-tan(13317)+sqrt(10298))+27666/7955^10915)-31151)-22788)^12424)/sqrt(30884))-sqrt(26306)*29122)/sqrt(5800))/17524)-sin(23302)-5922)-tan(1092)+log(13742))/24434)/28367)-sin(1705))*cos(27001))^(3428)^cos(6719))/sin(12486))-log(279))^13029-23014*log(401))^32443)+sqrt(3119))/28842/2470)/(25755))/13933)+cos(23446))-cos(5169))+19015)*tan(16321))-12754)^22287)+sin(23609))+30859+cos(16595))/28208)^cos(31149))*27113/sin(14543)/log(9792)-cos(25779)+5498)*32116)/23174)*14466*25192)+28377)+27148)-log(6671)^23461/16053)^2048)^(22238))-9076/9679)-27482^26136/tan(16428))*tan(3509))*sqrt(8639)*32735/cos(9784))*689)+cos(2469))^16094)-9059)-(505))*tan(14265))^cos(36))^3923)^30758)-19325+30002)-25938)^999)-30518/7250)-sqrt(11093)^cos(20727))-16133-4907)+18998)-8012)/13140)+sin(30611))-15173)+19090)/10867)/19108)+12031*tan(26071))-15747)-2578+4381)*16264)*3220)-29627)/3537^24988^3594)^10112)^31820*25103)-27973^6996^sin(21123))+6034)*tan(15489))/5522)/1587^1665)-(32250))-8596^tan(32546))-6677+18516)/cos(12929))-32425-sqrt(32219))*2619)^sqrt(26726)*8303)-tan(11108))/12615-log(11145))^22647-62*14370-log(4602)/4701/28708)-24556+sin(17258))-21980/10098^6366*tan(20288))+5268*12764)/sqrt(24110)+sin(10474))-1290)+31070)-2355*15985)-12017)*12662)*sqrt(24522)*23889-3240)/658^sin(25080)-22919/cos(26115)+2500)^6865)^tan(10987))^18510)^189)-log(30872))+29888)-16271)-8697-28711)*11146)*log(13580))+(7479))+cos(28561))+19743/5901)+12332)^25607)/24321*11747+14200)*22264-9963)^16937)-sin(19417))+26236)+sin(20906)/30794*16287/7411)/31790+(1348))^4192)+27625)-21217)+(8363))/sin(8428))*20030)*15160)-22512)*20355)*21891+15239)-sin(9955))^tan(15430))^log(9894)*sqrt(5401))+tan(31095)*21484^10706*sin(17536))/31429^(29366))^29073)-23594)*21844)+sin(13221))+7476)-27957)/18584^16362+14964)/sqrt(29316))+14264)*tan(12958)-sqrt(27225)^(29203))/5525+25779^sin(19803))+log(18567))+tan(20999))-13611)/31432)-21258)-11369)+8583+cos(1893))/27477)-3929/17027/24408)/27150)-22969)^cos(256)^30533)^9045/14585)+sin(5954))^6328^4506)/30873)+12891)+19907*sin(8881))-27369*18407/12264/sin(23336))-20244)-tan(29690))+log(7736)-17368*(22620))/29527)+(7869)+21946)/(15015))*3555)*tan(28438))+22524)+24635)+tan(1369)/tan(2145))/25684/cos(11462)-log(23614)-6750/1429)-29089+2328)+log(16848))*cos(9344))*30549+27099*32295)/log(14044))*16479*tan(2980))/10845-25801)-sqrt(26928))-6825)-32030)/6225/18808)*3696)^21547)^11072)/15012/26176)+tan(20224)+10037*10149)*2518)+sqrt(31925))-19450)^18932)+8792)/8482)^20497^14291)-sqrt(32655))+sqrt(21830))^3983)-10197)^23888+1770)/7470)-cos(3488)/7483)+cos(7041))*27037)^29682+sqrt(18601))*14931)*sqrt(29978))+tan(14306))-28383)-cos(474))*sqrt(16195)-2409-(13192))/11372)/26921)*21792)*sin(8546))*26651+15783+31563)/5431)-(26074))-5106^30743-cos(21775)-25569)+sqrt(16496)+cos(24864)*10148)+14162)^sqrt(1998))+sin(23606))/22^cos(6428)/cos(18509))/tan(29537))*4576*log(14879))-19804^tan(27170))-tan(24843))*cos(25234)+364)-log(30716)*sin(8865))^8354)*sin(29184))^3123)-sqrt(357))/(19036))*log(23043))*32468)^6849+22221)-9823)^sin(21237)+18432/log(21096))^sqrt(10443))*28222)-(1981)-29352-27876)-27049^7067/3318)*25472)*24453)*11831/log(29900)*log(22591))^23233+5467*1307)*25955)^19303+1141)/(22762))+23009-(9319)-sqrt(17223))*sqrt(30528)+log(17847))*1686)-15583/(30277))^cos(8321))*7414)*cos(31434))*22948-tan(15943)/tan(3640))^24709*12339)/1690)/10111)+15156)^13526)-8671)-9319/31126)^30369)*4330)^14406+(8249)+19516/tan(25295)-15538)^(19946))*sin(5772))/31988)-10563)*(25712)*5775)*10603)/(14489)/log(10618))*23176^log(24447))-24225*29653)*1629*31373/29717-14562)/31549/21270*15170+3656)-8837)/28177)+8718)^29670)+24549/13958^sin(25913))-31244)/28351)^30040)/30947^6122)^11983)*31587)-sin(23119))/17992*9233)*12742)+sin(12006))*12920)*11743)^cos(1154))-21631)-7561)+14682*23365+cos(18141)-15294-tan(29452))^cos(5248)/sqrt(32377)-10302)+15308)-14015*sqrt(11394)*16653)+25825-(19514))+sqrt(30755))^32571*30570)/(7335))-cos(8452)-(8028))/2813)/(14675))^cos(11027)*11832)/28558)+log(3953)*tan(30596))-19907)-11922*29874)/(28438))-17999-10085)/25110/log(8601)*14336*19177)^20737)-32429)+128^sin(14961))*28305)^log(3020))*10485)-19933+6447-15243)-28720/sin(17670)-cos(23652))+18972)-17703-(10332))*24302)+17176/sqrt(17830))-log(7373))^30484-5243)+5441)/12009)-22838)+21233)/8333+22852*5288)-4944)*(8336))*18972)/21185)-tan(32101)*sin(29301)-11324^3118)*sqrt(31731))-6020^30496)^10380)^11769)*log(29010)/2650)/15415+32052)*3637)/6197*22620)^32229/6651^9111^cos(8534))-31700-18140)/5420+tan(7991)/sqrt(22677)-cos(17068)*11200-sin(31908))^7946+3158/19437*10215-28713)^15749)+29431^sin(2623)/11519*tan(7332)-20724)+sin(18810))-501-2825)*20016)-tan(18374))*14163)^9069-32719)-21957)+27394)^7328)-20404)/sqrt(19167)+log(6038))+17530/23458/30684)+sin(3212)+sin(10005)*20385-10162)*15311)*13881-16292)*tan(8859))-129)*1304)/cos(17512)^26475-17145)-27708/tan(24479)+3873)-(7688)-10685)^27470)*tan(3772))^27009*20919-6260)/19280)-19960-8955)/log(16620)-13400-17865-5125)*4244)*22606-12125)*11311)/log(18863)*10105)^21672)/32036)^sin(10376)/22791)^3062)+20630)-10841-9819)^(21992))*24116/tan(15210)/sqrt(20648))^(7353))^tan(7638))-4221/9407)/30918)+sqrt(2555))-12138)*28965)*7758)-26230)/sin(27399)+cos(8809))+22646)-24420)/cos(22090))*tan(31156))-13712)/cos(5217))*log(29362))+4514-sin(18588)-sqrt(25596)^7650/9552)-9231)*(2920)-sin(656))-19895)*sqrt(29140)*sin(28276))*4253)^10552)+19601)+(7100)+16517)+sqrt(8567))-15915)+24865^9722)^17261-sqrt(1932))/1144*sin(5580)/23993-5540/29823)-25356)+22839)*log(18349)/1557)*sqrt(30577))*cos(32724))*27316)/4522/19194-9633/3669)^1268)^32469*26662)/sin(5830)+15587)+8064)/30712/12311)^15320)*21038)*cos(8334))*tan(1719)/log(4114)+29036)^592-26939)/tan(32360)-23812)-13041)-14171)^17726)-290/14335)+16957/2994)/22709/log(4024))-503)-sin(20758))^log(28440))-15392)+17487)-28835)/9458)-(1104))/14532^3435)/15451*log(24593)^32211)^31376^(28736))*log(16809))+4979)+29620)*6920*12789-22242)*14768)/12407)-29368)-27555)*26505)/3795)/cos(6963))^13768)^(5024)-27462)-25334+18797)^cos(4392))-23940)/3829)^29573*(26077))*tan(20141))^13534/16345*18419)^20341^18602)+8269/tan(14413)/6530)/10355)/6501)^cos(3312)-sin(16406)^6789)-6153)+32695)^cos(21485)^29111/21637)/5448*32361)^sqrt(19452)*log(26324))-28742)/22508^7989^28702)/25801-32133)-tan(2121)/log(32127)*24587^(10704))*4216-2058*30820)/(21783)-cos(23788))^13838)/14712)/tan(8381))/(31889))/(16791))+175+(4573))^(18471))/10296)+32229^tan(24366))^sqrt(2198))+sqrt(2056))/11363)*22058-22401/19947/22542)/7023)*sin(28189))+6419)*tan(735))/19045)^22084)/(30662))-16019/14369/sin(12741)*24929)^tan(20132))-23945+3071/4509)/tan(9847))-11449)/sqrt(27054))*10513-6103)*21926)+2820)*14072*(17826))^log(15873)^sqrt(5116))^4149)+11970+12383)/3819/cos(6036))/25951)+1686)^32087)-23379)/18003-21354)^sin(27405))/11233)/tan(17631))^20329)*log(14190)-sin(4069)*7836)/sqrt(3347))+2314*sqrt(14722))-2996)*14398)*8048)^cos(24793)+16209)+25785*30531*10192)+(19542)/(12336))-sin(29841))-sqrt(27410))^log(16974))-15183^sqrt(1889)^9304)/5793)/15914)+32395)+16870)/11790)^15325)*31949)+5976)*6741)-6511)*17434)*19358)/tan(24628))^7165+19253)/26694)/22933)+4628)-20863)*log(28153)^2054)^log(11358))*25870^4681+27497)+18817*sqrt(3838))/2730)^12525)*tan(14660)*6668^log(2237))/20029/15092)-10080)-19413)/23799)-15110)+1451)+27572)-19039-5117-32370)+sqrt(16533))*log(12117))-22158)/3498)^3184)-sqrt(25732)+log(23810))^sin(14212))+18809)/sin(9949)-11741^28810)*16873)/24644)*29117*sqrt(19435)^log(21762))+26760*132*log(25619)/3405)+21145)*18873/(12671))^27687)+6645)+7212^tan(17360))/3707)-17508)-4313*log(4382))/3793)^19429)/7439*log(20366)/sin(18568))+25832-4050)/3367)^24671)/29885)+32381)/31201)*13883*19533)/25772)-(6143))-9252)^sin(31496))^31576+log(18079)/11920)*19998)^sin(2884)*cos(23184))-tan(2532))/log(20466))+sqrt(16024))*14691)-6456)-23500)^13772/10949)/19034)-6605-25544)^21516)/29462+30505)+30026)/(4623))/5045)+sin(28304))-18311)*9531)^8900)^tan(13549))-12821*25571-17943)^7763)*10248)-cos(26328))/7437)*(20276)/29788)^25658)-tan(20))-3541)+5523^11405+sqrt(22896))+cos(18430))/sqrt(31902))^cos(32271))+31545/log(8438))-13057+8777)^(5795))/7087^(11315))+2533)/14467)/13629/cos(17987))*23231)/28430)^908)^15809/tan(9279))-31971)^sin(11347))^6364+11749)+15692)*log(18500))^19912)-5157)^log(7616))/1670-sin(10339))+10102)*20653)-9316)+13079)/(16806)*7541)+3399)^9986*tan(1392)+29110)/sin(14049))^cos(10068))+15440)*(6095))+tan(3500)+19449)^18070)*13984)*sin(1427))^cos(16249))*(20922))-32401)+8942)*29724^18671^cos(10197))-4020*sqrt(13393)+sin(13306))^9712)^tan(4332))/4688)*30789/13430+28773+cos(31487))+12335)+8470)/11943)/cos(28690))*3239)*sin(30424))^log(4393))*11639*29945)-sqrt(28323)
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-27 11:29:02 | 显示全部楼层
Ewan-Ahiouy 发表于 2023-7-27 11:27
手贱调成了10000,结果

想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-7-27 11:31:24 | 显示全部楼层

我还试出了我电脑的极限 -> 10549
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-27 11:46:28 | 显示全部楼层
Ewan-Ahiouy 发表于 2023-7-27 11:31
我还试出了我电脑的极限 -> 10549

想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-27 11:48:46 | 显示全部楼层
Ewan-Ahiouy 发表于 2023-7-27 11:31
我还试出了我电脑的极限 -> 10549

86853
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-27 11:53:03 | 显示全部楼层
liuhongrun2022 发表于 2023-7-27 10:40
尝试使用python结果报个MemoryError。(内存错误)
readme.md,你出的数字太大了

鱼CR6你可以继续答题
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-27 11:53:33 | 显示全部楼层

666,你鱼CR6的写好了吗?(该不会你只搞第一题罢)
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-7-27 11:59:16 | 显示全部楼层
wc,两眼一黑
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-7-27 12:02:35 From FishC Mobile | 显示全部楼层
zhangjinxuan 发表于 2023-7-27 11:53
鱼CR6你可以继续答题

我电脑被没收了,我用Python是在线的编辑器
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-7-27 12:05:18 | 显示全部楼层
有没有除于0的可能
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2024-11-16 07:41

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表