import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
import tensorflow as tf
from tqdm import tqdm
# Example usage of simulated_annealing() function
# Set initial temperature and cooling rate
initial_temperature = 1000
cooling_rate = 0.99
# 障碍圆的位置和半径
obstacle_center = np.array([0, 0])
obstacle_radius = 500
min_turning_radius = 30
#无人机的速度 speed_A=10 speed_B=10
# 两架无人机的初始位置和目标位置
A_start = np.array([-1000, 0])
A_goal = np.array([3500,0 ])
B_start = np.array([3500, 0])
B_goal = np.array([-1000, 0])
def create_model(input_shape):
model = tf.keras.Sequential([
tf.keras.layers.Dense(512, activation='relu', input_shape=input_shape),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(2) # 输出轨迹的点坐标
])
return model
# 生成随机飞行轨迹
def generate_random_trajectory(start, goal, steps):
x = np.linspace(start[0], goal[0], steps)
y = np.linspace(start[1], goal[1], steps)
trajectory = np.column_stack((x, y))
return trajectory
# 检查是否避开障碍圆
def check_obstacle_avoidance(trajectory):
distances = np.linalg.norm(trajectory - obstacle_center, axis=1)
return np.all(distances > obstacle_radius)
def check_minimum_turning_radius(trajectory, min_turning_radius):
for i in range(len(trajectory) - 2):
point1, point2, point3 = trajectory[i], trajectory[i+1], trajectory[i+2]
# 计算转弯半径
radius = np.linalg.norm(point2 - point1) / (2 * np.sin(np.arccos(np.dot((point2 - point1) / np.linalg.norm(point2 - point1), (point3 - point1) / np.linalg.norm(point3 - point1)))))
if radius < min_turning_radius:
return False
return True
# 计算直线到点的距离
def line_point_distance(line_start, line_end, point):
line_vec = line_end - line_start
point_vec = point - line_start
line_length = np.linalg.norm(line_vec)
line_unit_vec = line_vec / line_length
projection_length = np.dot(point_vec, line_unit_vec)
if projection_length < 0:
return np.linalg.norm(point_vec)
elif projection_length > line_length:
return np.linalg.norm(point - line_end)
else:
projection_point = line_start + projection_length * line_unit_vec
return np.linalg.norm(point - projection_point)
# 检查是否避免碰面
def check_no_collisions(trajectory_A, trajectory_B):
for i in range(len(trajectory_A) - 1):
point_A1, point_A2 = trajectory_A[i], trajectory_A[i + 1]
point_B1, point_B2 = trajectory_B[i], trajectory_B[i + 1]
# 判断连线与障碍圆是否相交
distance_A1 = line_point_distance(point_A1, point_A2, obstacle_center)
distance_B1 = line_point_distance(point_B1, point_B2, obstacle_center)
if distance_A1 <= obstacle_radius or distance_B1 <= obstacle_radius:
return True
return False
#计算飞行时间
def time_to_reach_goal(trajectory, speed):
total_distance = 0.0
for i in range(len(trajectory) - 1):
total_distance += np.linalg.norm(trajectory[i + 1] - trajectory[i])
time_to_reach_goal = total_distance / speed
return time_to_reach_goal
#模拟退火算法
def simulated_annealing(iterations, speed_A, speed_B, initial_temperature, cooling_rate):
current_trajectory_A = generate_random_trajectory(A_start, A_goal, steps=10000)
current_trajectory_B = generate_random_trajectory(B_start, B_goal, steps=10000)
best_trajectory_A = current_trajectory_A.copy()
best_trajectory_B = current_trajectory_B.copy()
shortest_time_A = time_to_reach_goal(current_trajectory_A, speed_A)
for i in tqdm(range(iterations)):
# 生成邻域内的随机新解
new_trajectory_A = generate_random_trajectory(A_start, A_goal, steps=10000)
new_trajectory_B = generate_random_trajectory(B_start, B_goal, steps=10000)
# 检查约束条件
if check_obstacle_avoidance(new_trajectory_A) and \
check_no_collisions(new_trajectory_A, new_trajectory_B) and \
check_minimum_turning_radius(new_trajectory_A, min_turning_radius):
# 计算用时
time_A = time_to_reach_goal(new_trajectory_A, speed_A)
# 计算能量差
energy_difference = shortest_time_A - time_A
# 判断是否接受新解
if energy_difference > 0 or np.random.rand() < np.exp(energy_difference / initial_temperature):
current_trajectory_A = new_trajectory_A.copy()
# 更新最优解
if time_A < shortest_time_A:
best_trajectory_A = new_trajectory_A.copy()
shortest_time_A = time_A
# 降低温度
initial_temperature *= cooling_rate
# 返回最优轨迹和B对应的轨迹
return best_trajectory_A, current_trajectory_B
def visualize_trajectory(trajectory_A, trajectory_B):
plt.figure(figsize=(8, 6))
plt.plot(trajectory_A[:, 0], trajectory_A[:, 1], label='无人机A')
plt.plot(trajectory_B[:, 0], trajectory_B[:, 1], label='无人机B')
plt.scatter(A_start[0], A_start[1], color='green', marker='o', label='无人机A起点')
plt.scatter(A_goal[0], A_goal[1], color='green', marker='x', label='无人机A目标点')
plt.scatter(B_start[0], B_start[1], color='blue', marker='o', label='无人机B起点')
plt.scatter(B_goal[0], B_goal[1], color='blue', marker='x', label='无人机B目标点')
# 绘制障碍圆
obstacle_circle = Circle(obstacle_center, obstacle_radius, edgecolor='red', facecolor='none')
plt.gca().add_patch(obstacle_circle)
plt.xlabel('X坐标')
plt.ylabel('Y坐标')
plt.title('无人机飞行轨迹')
plt.legend()
plt.grid(True)
plt.axis('equal') # 设置坐标轴刻度相等,确保圆形显示不被压缩
plt.show()
# 运行模拟退火算法并获取最优轨迹和B对应的轨迹
best_trajectory_A, current_trajectory_B = simulated_annealing(iterations=500000, speed_A=10, speed_B=10, initial_temperature=1000, cooling_rate=0.99)
# 可视化最优轨迹(增加判断)
if best_trajectory_A is not None and current_trajectory_B is not None:
visualize_trajectory(best_trajectory_A, current_trajectory_B)
else:
print("未找到满足约束条件的飞行轨迹,无法进行可视化。")