50 鱼币
在这段代码中,我试图建立数学模型解决这个问题:平面上A、B两个无人机站分别位于半径为500 m的障碍圆两边直径的延长线上,A站距离圆心1 km,B站距离圆心3.5 km。两架无人机分别从A、B两站同时出发,以恒定速率10 m/s飞向B站和A站执行任务。飞行过程中两架无人机必须避开障碍圆、并且不得碰面 (即两架无人机的连线必须保持与障碍圆处于相交状态) 。无人机的转弯半径不小于30m。请建立数学模型,解决以下问题:
 
import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle import tensorflow as tf from tqdm import tqdm # Example usage of simulated_annealing() function # Set initial temperature and cooling rate initial_temperature = 1000 cooling_rate = 0.99 # 障碍圆的位置和半径 obstacle_center = np.array([0, 0]) obstacle_radius = 500 min_turning_radius = 30  #无人机的速度 speed_A=10 speed_B=10 # 两架无人机的初始位置和目标位置 A_start = np.array([-1000, 0]) A_goal = np.array([3500,0 ]) B_start = np.array([3500, 0]) B_goal = np.array([-1000, 0]) def create_model(input_shape):     model = tf.keras.Sequential([         tf.keras.layers.Dense(512, activation='relu', input_shape=input_shape),         tf.keras.layers.Dense(512, activation='relu'),         tf.keras.layers.Dense(2)  # 输出轨迹的点坐标     ])     return model # 生成随机飞行轨迹 def generate_random_trajectory(start, goal, steps):     x = np.linspace(start[0], goal[0], steps)     y = np.linspace(start[1], goal[1], steps)     trajectory = np.column_stack((x, y))     return trajectory # 检查是否避开障碍圆 def check_obstacle_avoidance(trajectory):     distances = np.linalg.norm(trajectory - obstacle_center, axis=1)     return np.all(distances > obstacle_radius) def check_minimum_turning_radius(trajectory, min_turning_radius):     for i in range(len(trajectory) - 2):         point1, point2, point3 = trajectory[i], trajectory[i+1], trajectory[i+2]         # 计算转弯半径         radius = np.linalg.norm(point2 - point1) / (2 * np.sin(np.arccos(np.dot((point2 - point1) / np.linalg.norm(point2 - point1), (point3 - point1) / np.linalg.norm(point3 - point1)))))         if radius < min_turning_radius:             return False     return True # 计算直线到点的距离 def line_point_distance(line_start, line_end, point):     line_vec = line_end - line_start     point_vec = point - line_start     line_length = np.linalg.norm(line_vec)     line_unit_vec = line_vec / line_length     projection_length = np.dot(point_vec, line_unit_vec)     if projection_length < 0:         return np.linalg.norm(point_vec)     elif projection_length > line_length:         return np.linalg.norm(point - line_end)     else:         projection_point = line_start + projection_length * line_unit_vec         return np.linalg.norm(point - projection_point) # 检查是否避免碰面 def check_no_collisions(trajectory_A, trajectory_B):     for i in range(len(trajectory_A) - 1):         point_A1, point_A2 = trajectory_A[i], trajectory_A[i + 1]         point_B1, point_B2 = trajectory_B[i], trajectory_B[i + 1]         # 判断连线与障碍圆是否相交         distance_A1 = line_point_distance(point_A1, point_A2, obstacle_center)         distance_B1 = line_point_distance(point_B1, point_B2, obstacle_center)         if distance_A1 <= obstacle_radius or distance_B1 <= obstacle_radius:             return True     return False #计算飞行时间 def time_to_reach_goal(trajectory, speed):     total_distance = 0.0     for i in range(len(trajectory) - 1):         total_distance += np.linalg.norm(trajectory[i + 1] - trajectory[i])     time_to_reach_goal = total_distance / speed     return time_to_reach_goal #模拟退火算法 def simulated_annealing(iterations, speed_A, speed_B, initial_temperature, cooling_rate):     current_trajectory_A = generate_random_trajectory(A_start, A_goal, steps=10000)     current_trajectory_B = generate_random_trajectory(B_start, B_goal, steps=10000)     best_trajectory_A = current_trajectory_A.copy()     best_trajectory_B = current_trajectory_B.copy()     shortest_time_A = time_to_reach_goal(current_trajectory_A, speed_A)     for i in tqdm(range(iterations)):         # 生成邻域内的随机新解         new_trajectory_A = generate_random_trajectory(A_start, A_goal, steps=10000)         new_trajectory_B = generate_random_trajectory(B_start, B_goal, steps=10000)         # 检查约束条件         if check_obstacle_avoidance(new_trajectory_A) and \            check_no_collisions(new_trajectory_A, new_trajectory_B) and \            check_minimum_turning_radius(new_trajectory_A, min_turning_radius):             # 计算用时             time_A = time_to_reach_goal(new_trajectory_A, speed_A)             # 计算能量差             energy_difference = shortest_time_A - time_A             # 判断是否接受新解             if energy_difference > 0 or np.random.rand() < np.exp(energy_difference / initial_temperature):                 current_trajectory_A = new_trajectory_A.copy()                 # 更新最优解                 if time_A < shortest_time_A:                     best_trajectory_A = new_trajectory_A.copy()                     shortest_time_A = time_A         # 降低温度         initial_temperature *= cooling_rate     # 返回最优轨迹和B对应的轨迹     return best_trajectory_A, current_trajectory_B def visualize_trajectory(trajectory_A, trajectory_B):     plt.figure(figsize=(8, 6))     plt.plot(trajectory_A[:, 0], trajectory_A[:, 1], label='无人机A')     plt.plot(trajectory_B[:, 0], trajectory_B[:, 1], label='无人机B')     plt.scatter(A_start[0], A_start[1], color='green', marker='o', label='无人机A起点')     plt.scatter(A_goal[0], A_goal[1], color='green', marker='x', label='无人机A目标点')     plt.scatter(B_start[0], B_start[1], color='blue', marker='o', label='无人机B起点')     plt.scatter(B_goal[0], B_goal[1], color='blue', marker='x', label='无人机B目标点')          # 绘制障碍圆     obstacle_circle = Circle(obstacle_center, obstacle_radius, edgecolor='red', facecolor='none')     plt.gca().add_patch(obstacle_circle)          plt.xlabel('X坐标')     plt.ylabel('Y坐标')     plt.title('无人机飞行轨迹')     plt.legend()     plt.grid(True)     plt.axis('equal')  # 设置坐标轴刻度相等,确保圆形显示不被压缩     plt.show() # 运行模拟退火算法并获取最优轨迹和B对应的轨迹 best_trajectory_A, current_trajectory_B = simulated_annealing(iterations=500000, speed_A=10, speed_B=10, initial_temperature=1000, cooling_rate=0.99) # 可视化最优轨迹(增加判断) if best_trajectory_A is not None and current_trajectory_B is not None:     visualize_trajectory(best_trajectory_A, current_trajectory_B) else:     print("未找到满足约束条件的飞行轨迹,无法进行可视化。") 复制代码  
我来回答