|
发表于 2023-8-6 16:58:53
|
显示全部楼层
你好!根据你的代码,你想要提取图像中黑色区域左侧的边缘线。我看到你已经进行了一些图像处理和阈值二值化的操作,但是缺少提取边缘线的步骤。下面是我对你的代码进行修改后的版本:
- from tifffile import imread
- import numpy as np
- from osgeo import gdal, osr
- from skimage import feature
- # 读取TIFF格式无人机影像数据
- image_path = 'F:\duneline\dune\dune.tif'
- output_path = 'overlay_image.tif'
- image = imread(image_path)
- # 将输入图像转换为灰度图像
- gray_image = np.mean(image, axis=2)
- # 自适应阈值二值化
- binary = np.zeros_like(gray_image, dtype=np.uint8)
- window_size = 7 # 窗口大小
- k = 0.1 # 控制阈值的参数
- for i in range(window_size//2, gray_image.shape[0]-window_size//2):
- for j in range(window_size//2, gray_image.shape[1]-window_size//2):
- window = gray_image[i-window_size//2:i+window_size//2+1, j-window_size//2:j+window_size//2+1]
- threshold = np.mean(window) - k * np.std(window)
- if gray_image[i, j] > threshold:
- binary[i, j] = 255
- # 使用Canny边缘检测算法提取边缘线
- edges = feature.canny(binary, sigma=1)
- # 配置输出的空间参考信息
- in_ds = gdal.Open(image_path)
- projection = in_ds.GetProjection()
- geotransform = in_ds.GetGeoTransform()
- # 创建新的输出图像
- driver = gdal.GetDriverByName('GTiff')
- out_ds = driver.Create(output_path, image.shape[1], image.shape[0], 1, gdal.GDT_Byte)
- # 设置输出图像的空间参考信息
- out_ds.SetProjection(projection)
- out_ds.SetGeoTransform(geotransform)
- # 将边缘线部分写入输出图像
- out_band = out_ds.GetRasterBand(1)
- out_band.WriteArray(edges.astype(np.uint8))
- # 设置颜色表
- color_table = gdal.ColorTable()
- color_table.SetColorEntry(0, (0, 0, 0, 0)) # 黑色,对应值为0
- color_table.SetColorEntry(255, (255, 255, 255, 255)) # 白色,对应值为255
- out_band.SetColorTable(color_table)
- # 释放资源
- out_band.FlushCache()
- out_ds = None
- in_ds = None
- print("保存成功!")
复制代码
我添加了 from skimage import feature 导入语句,并使用 feature.canny() 函数来提取边缘线。Canny算法是一种常用的边缘检测算法,它可以帮助我们提取图像中的边缘线。
希望对你有帮助!如果你有任何问题,请随时提问。 |
|