|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
import cv2
import numpy as np
# 1. 分割遥感影像为多块图幅
def split_image(image, block_size):
height, width = image.shape[:2]
block_images = []
for i in range(0, height, block_size):
for j in range(0, width, block_size):
block = image[i:i+block_size, j:j+block_size]
block_images.append(block)
return block_images
# 2. 分别对每块图幅转为灰度图像
def convert_to_gray(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray_image
# 3. 对各个图像进行边缘检测
def edge_detection(image):
edges = cv2.Canny(image, 0.5, 2)
return edges
# 4. 消除噪声干扰
def remove_noise(image):
denoised_image = cv2.medianBlur(image, 5)
return denoised_image
# 5. 将各个图幅合并为一个图幅
def merge_images(images, block_size):
num_blocks = len(images)
rows = int(np.ceil(np.sqrt(num_blocks))) # 向上取整
cols = rows
merged_image = np.zeros((rows * block_size, cols * block_size), dtype=np.uint8)
for i, image in enumerate(images):
x = (i % cols) * block_size
y = (i // cols) * block_size
merged_image[y:y+image.shape[0], x:x+image.shape[1]] = image
return merged_image
# 6. 导出结果
def export_result(image, file_path):
cv2.imwrite(file_path, image)
# 示例代码
image_path = r"C:\Users\WINDOWS\Desktop\taiyuan\python\dune\dune.tif"
block_size = 800
# 读取遥感影像
image = cv2.imread(image_path)
# 1. 分割遥感影像为多块图幅
block_images = split_image(image, block_size)
# 2. 分别对每块图幅转为灰度图像
gray_images = [convert_to_gray(block) for block in block_images]
# 3. 对各个图像进行边缘检测
edges_images = [edge_detection(gray) for gray in gray_images]
# 4. 消除噪声干扰
denoised_images = [remove_noise(edges) for edges in edges_images]
# 5. 将各个图幅合并为一个图幅
merged_image = merge_images(denoised_images, block_size)
# 6. 导出结果
export_result(merged_image, "output.jpg")
import cv2import numpy as np# 1. 分割遥感影像为多块图幅def split_image(image, block_size): height, width = image.shape[:2] block_images = [] for i in range(0, height, block_size): for j in range(0, width, block_size): block = image[i:i+block_size, j:j+block_size] block_images.append(block) return block_images# 2. 分别对每块图幅转为灰度图像def convert_to_gray(image): gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) return gray_image# 3. 对各个图像进行边缘检测(使用Sobel算子)def edge_detection(image): sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3) sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3) edges = cv2.magnitude(sobel_x, sobel_y) edges = cv2.convertScaleAbs(edges) return edges# 4. 消除噪声干扰def remove_noise(image): denoised_image = cv2.medianBlur(image, 5) return denoised_image# 5. 将各个图幅合并为一个图幅def merge_images(images, block_size): num_blocks = len(images) rows = int(np.ceil(np.sqrt(num_blocks))) # 向上取整 cols = rows merged_image = np.zeros((rows * block_size, cols * block_size), dtype=np.uint8) for i, image in enumerate(images): x = (i % cols) * block_size y = (i // cols) * block_size merged_image[y:y+image.shape[0], x:x+image.shape[1]] = image return merged_image# 6. 导出结果def export_result(image, file_path): cv2.imwrite(file_path, image)# 示例代码image_path = r"C:\Users\WINDOWS\Desktop\taiyuan\python\dune\dune.tif"block_size = 800# 读取遥感影像image = cv2.imread(image_path)# 1. 分割遥感影像为多块图幅block_images = split_image(image, block_size)# 2. 分别对每块图幅转为灰度图像gray_images = [convert_to_gray(block) for block in block_images]# 3. 对各个图像进行边缘检测edges_images = [edge_detection(gray) for gray in gray_images]# 4. 消除噪声干扰denoised_images = [remove_noise(edges) for edges in edges_images]# 5. 将各个图幅合并为一个图幅merged_image = merge_images(denoised_images, block_size)# 6. 导出结果export_result(merged_image, "output.jpg")
注意,在第3步中,我将边缘检测算子从Canny改为了Sobel。使用Sobel算子可以获得基于梯度的边缘信息。
如果回答对你有帮助,请给我一个最佳答案!
|
|