你好,根据错误信息和代码分析,问题出在获取原始图像形状时,使用了错误的索引方式。为了修复此问题,请修改 merge_images 函数中的以下行:merged_image = np.zeros(original_image_shape, dtype=np.uint8)
改为:merged_image = np.zeros((original_image_shape[0], original_image_shape[1], 3), dtype=np.uint8)
同时,请将 export_result 函数中的以下行:cv2.imwrite(file_path, image)
改为:cv2.imwrite(file_path, cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
这样可以确保导出的图像的颜色通道顺序正确。修改后的完整代码如下:import cv2import numpy as np# 1. 分割遥感影像为多块图幅def split_image(image, block_size): height, width = image.shape[:2] block_images = [] for i in range(0, height, block_size): for j in range(0, width, block_size): block = image[i:i+block_size, j:j+block_size] block_images.append(block) return block_images# 2. 分别对每块图幅转为灰度图像def convert_to_gray(image): gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) return gray_image# 3. 对各个图像进行边缘检测def edge_detection(image): sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3) sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3) edges = cv2.magnitude(sobel_x, sobel_y) edges = cv2.convertScaleAbs(edges) return edges# 4. 消除噪声干扰def remove_noise(image): denoised_image = cv2.medianBlur(image, 5) return denoised_image# 5. 将各个图幅合并为一个图幅def merge_images(images, original_image_shape): merged_image = np.zeros((original_image_shape[0], original_image_shape[1], 3), dtype=np.uint8) block_size = images[0].shape[0] # assume all blocks have the same size rows = original_image_shape[0] // block_size cols = original_image_shape[1] // block_size for i, image in enumerate(images): x = (i % cols) * block_size y = (i // cols) * block_size merged_image[y:y+image.shape[0], x:x+image.shape[1], :] = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) # 转换为彩色图像 return merged_image# 6. 导出结果def export_result(image, file_path): cv2.imwrite(file_path, cv2.cvtColor(image, cv2.COLOR_BGR2RGB))# 示例代码image_path = r"C:\Users\WINDOWS\Desktop\taiyuan\python\dune\dune.tif"block_size = 800# 读取遥感影像image = cv2.imread(image_path)# 1. 分割遥感影像为多块图幅block_images = split_image(image, block_size)# 2. 分别对每块图幅转为灰度图像gray_images = [convert_to_gray(block) for block in block_images]# 3. 对各个图像进行边缘检测edges_images = [edge_detection(gray) for gray in gray_images]# 4. 消除噪声干扰denoised_images = [remove_noise(edges) for edges in edges_images]# 5. 将各个图幅合并为一个图幅merged_image = merge_images(denoised_images, image.shape)# 6. 导出结果export_result(merged_image, "output.jpg")
希望对你有帮助!如果还有其他问题,请随时提问。
如果回答对你有帮助,请给我一个最佳答案!
|