|
发表于 2023-8-7 20:14:02
|
显示全部楼层
你好,根据错误信息和代码分析,问题出在获取原始图像形状时,使用了错误的索引方式。为了修复此问题,请修改 merge_images 函数中的以下行:
- merged_image = np.zeros(original_image_shape, dtype=np.uint8)
复制代码
改为:
- merged_image = np.zeros((original_image_shape[0], original_image_shape[1], 3), dtype=np.uint8)
复制代码
同时,请将 export_result 函数中的以下行:
- cv2.imwrite(file_path, image)
复制代码
改为:
- cv2.imwrite(file_path, cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
复制代码
这样可以确保导出的图像的颜色通道顺序正确。修改后的完整代码如下:
- import cv2
- import numpy as np
- # 1. 分割遥感影像为多块图幅
- def split_image(image, block_size):
- height, width = image.shape[:2]
- block_images = []
- for i in range(0, height, block_size):
- for j in range(0, width, block_size):
- block = image[i:i+block_size, j:j+block_size]
- block_images.append(block)
- return block_images
- # 2. 分别对每块图幅转为灰度图像
- def convert_to_gray(image):
- gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- return gray_image
- # 3. 对各个图像进行边缘检测
- def edge_detection(image):
- sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)
- sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)
- edges = cv2.magnitude(sobel_x, sobel_y)
- edges = cv2.convertScaleAbs(edges)
- return edges
- # 4. 消除噪声干扰
- def remove_noise(image):
- denoised_image = cv2.medianBlur(image, 5)
- return denoised_image
- # 5. 将各个图幅合并为一个图幅
- def merge_images(images, original_image_shape):
- merged_image = np.zeros((original_image_shape[0], original_image_shape[1], 3), dtype=np.uint8)
- block_size = images[0].shape[0] # assume all blocks have the same size
- rows = original_image_shape[0] // block_size
- cols = original_image_shape[1] // block_size
- for i, image in enumerate(images):
- x = (i % cols) * block_size
- y = (i // cols) * block_size
- merged_image[y:y+image.shape[0], x:x+image.shape[1], :] = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) # 转换为彩色图像
- return merged_image
- # 6. 导出结果
- def export_result(image, file_path):
- cv2.imwrite(file_path, cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
- # 示例代码
- image_path = r"C:\Users\WINDOWS\Desktop\taiyuan\python\dune\dune.tif"
- block_size = 800
- # 读取遥感影像
- image = cv2.imread(image_path)
- # 1. 分割遥感影像为多块图幅
- block_images = split_image(image, block_size)
- # 2. 分别对每块图幅转为灰度图像
- gray_images = [convert_to_gray(block) for block in block_images]
- # 3. 对各个图像进行边缘检测
- edges_images = [edge_detection(gray) for gray in gray_images]
- # 4. 消除噪声干扰
- denoised_images = [remove_noise(edges) for edges in edges_images]
- # 5. 将各个图幅合并为一个图幅
- merged_image = merge_images(denoised_images, image.shape)
- # 6. 导出结果
- export_result(merged_image, "output.jpg")
复制代码
希望对你有帮助!如果还有其他问题,请随时提问。
如果回答对你有帮助,请给我一个最佳答案!  
|
|