鱼C论坛

 找回密码
 立即注册
查看: 1556|回复: 3

帮忙改正代码错误

[复制链接]
发表于 2023-8-7 20:13:24 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能^_^

您需要 登录 才可以下载或查看,没有账号?立即注册

x
代码:
import cv2
import numpy as np
# 1. 分割遥感影像为多块图幅
def split_image(image, block_size):
    height, width = image.shape[:2]
    block_images = []
    for i in range(0, height, block_size):
        for j in range(0, width, block_size):
            block = image[i:i+block_size, j:j+block_size]
            block_images.append(block)
    return block_images


# 2. 分别对每块图幅转为灰度图像
def convert_to_gray(image):
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    return gray_image

# 3. 对各个图像进行边缘检测
# def edge_detection(image):
#     edges = cv2.Canny(image, 0.5, 2)
#     return edges

def edge_detection(image):
    sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)
    sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)
    edges = cv2.magnitude(sobel_x, sobel_y)
    edges = cv2.convertScaleAbs(edges)
    return edges



# 4. 消除噪声干扰
def remove_noise(image):
    denoised_image = cv2.medianBlur(image, 5)
    return denoised_image

# 5. 将各个图幅合并为一个图幅
#


def merge_images(images, original_image_shape):
    merged_image = np.zeros(original_image_shape, dtype=np.uint8)
    block_size = images[0].shape[0]  # assume all blocks have the same size
    rows = original_image_shape[0] // block_size
    cols = original_image_shape[1] // block_size
    for i, image in enumerate(images):
        x = (i % cols) * block_size
        y = (i // cols) * block_size
        merged_image[y:y+image.shape[0], x:x+image.shape[1], :] = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)  # 转换为彩色图像
    return merged_image
# 6. 导出结果
def export_result(image, file_path):
    cv2.imwrite(file_path, image)

# 示例代码
image_path = r"C:\Users\WINDOWS\Desktop\taiyuan\python\dune\dune.tif"
block_size = 800

# 读取遥感影像
image = cv2.imread(image_path)

# 1. 分割遥感影像为多块图幅
block_images = split_image(image, block_size)

# 2. 分别对每块图幅转为灰度图像
gray_images = [convert_to_gray(block) for block in block_images]

# 3. 对各个图像进行边缘检测
edges_images = [edge_detection(gray) for gray in gray_images]

# 4. 消除噪声干扰
denoised_images = [remove_noise(edges) for edges in edges_images]

# 5. 将各个图幅合并为一个图幅
merged_image = merge_images(denoised_images, block_size)


# 6. 导出结果
export_result(merged_image, "output.jpg")

错误:
Traceback (most recent call last):
  File "C:\Users\WINDOWS\Desktop\taiyuan\python\segement.py", line 85, in <module>
    merged_image = merge_images(denoised_images, block_size)
  File "C:\Users\WINDOWS\Desktop\taiyuan\python\segement.py", line 54, in merge_images
    rows = original_image_shape[0] // block_size
TypeError: 'int' object is not subscriptable
小甲鱼最新课程 -> https://ilovefishc.com
回复

使用道具 举报

发表于 2023-8-7 20:13:45 | 显示全部楼层
错误的原因是在merge_images函数中,original_image_shape被当作了一个整数进行处理,而不是一个元组。这是由于在调用merge_images函数时,block_size被传递为了第二个参数,而不是original_image_shape。

要解决这个问题,我们需要修改merge_images函数的定义和调用。下面是修改后的代码:

  1. def merge_images(images, original_image_shape):
  2.     merged_image = np.zeros(original_image_shape, dtype=np.uint8)
  3.     block_size = images[0].shape[0]  # assume all blocks have the same size
  4.     rows = original_image_shape[0] // block_size
  5.     cols = original_image_shape[1] // block_size
  6.     for i, image in enumerate(images):
  7.         x = (i % cols) * block_size
  8.         y = (i // cols) * block_size
  9.         merged_image[y:y+image.shape[0], x:x+image.shape[1], :] = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)  # 转换为彩色图像
  10.     return merged_image

  11. # 示例代码
  12. image_path = r"C:\Users\WINDOWS\Desktop\taiyuan\python\dune\dune.tif"
  13. block_size = 800

  14. # 读取遥感影像
  15. image = cv2.imread(image_path)

  16. # 1. 分割遥感影像为多块图幅
  17. block_images = split_image(image, block_size)

  18. # 2. 分别对每块图幅转为灰度图像
  19. gray_images = [convert_to_gray(block) for block in block_images]

  20. # 3. 对各个图像进行边缘检测
  21. edges_images = [edge_detection(gray) for gray in gray_images]

  22. # 4. 消除噪声干扰
  23. denoised_images = [remove_noise(edges) for edges in edges_images]

  24. # 5. 将各个图幅合并为一个图幅
  25. merged_image = merge_images(denoised_images, image.shape)

  26. # 6. 导出结果
  27. export_result(merged_image, "output.jpg")
复制代码


通过将image.shape作为merge_images函数的第二个参数传递,我们可以解决这个错误。这样,original_image_shape将被正确地解析为一个元组,从而避免了TypeError异常。
小甲鱼最新课程 -> https://ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-8-7 20:13:56 | 显示全部楼层
错误的原因是在函数merge_images中,original_image_shape被错误地用作一个整数进行了索引操作。修改代码如下:

  1. import cv2
  2. import numpy as np

  3. # 1. 分割遥感影像为多块图幅
  4. def split_image(image, block_size):
  5.     height, width = image.shape[:2]
  6.     block_images = []
  7.     for i in range(0, height, block_size):
  8.         for j in range(0, width, block_size):
  9.             block = image[i:i+block_size, j:j+block_size]
  10.             block_images.append(block)
  11.     return block_images

  12. # 2. 分别对每块图幅转为灰度图像
  13. def convert_to_gray(image):
  14.     gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  15.     return gray_image

  16. # 3. 对各个图像进行边缘检测
  17. def edge_detection(image):
  18.     sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)
  19.     sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)
  20.     edges = cv2.magnitude(sobel_x, sobel_y)
  21.     edges = cv2.convertScaleAbs(edges)
  22.     return edges

  23. # 4. 消除噪声干扰
  24. def remove_noise(image):
  25.     denoised_image = cv2.medianBlur(image, 5)
  26.     return denoised_image

  27. # 5. 将各个图幅合并为一个图幅
  28. def merge_images(images, block_size):
  29.     rows = len(images) * block_size
  30.     cols = block_size
  31.     merged_image = np.zeros((rows, cols), dtype=np.uint8)
  32.     for i, image in enumerate(images):
  33.         x = 0
  34.         y = i * block_size
  35.         merged_image[y:y+block_size, x:x+block_size] = image
  36.     return merged_image

  37. # 6. 导出结果
  38. def export_result(image, file_path):
  39.     cv2.imwrite(file_path, image)

  40. # 示例代码
  41. image_path = r"C:\Users\WINDOWS\Desktop\taiyuan\python\dune\dune.tif"
  42. block_size = 800

  43. # 读取遥感影像
  44. image = cv2.imread(image_path)

  45. # 1. 分割遥感影像为多块图幅
  46. block_images = split_image(image, block_size)

  47. # 2. 分别对每块图幅转为灰度图像
  48. gray_images = [convert_to_gray(block) for block in block_images]

  49. # 3. 对各个图像进行边缘检测
  50. edges_images = [edge_detection(gray) for gray in gray_images]

  51. # 4. 消除噪声干扰
  52. denoised_images = [remove_noise(edges) for edges in edges_images]

  53. # 5. 将各个图幅合并为一个图幅
  54. merged_image = merge_images(denoised_images, block_size)

  55. # 6. 导出结果
  56. export_result(merged_image, "output.jpg")
复制代码


这样修改后,你应该能够正确地合并图像并导出结果。
如果问题已经解决,请设置最佳答案
小甲鱼最新课程 -> https://ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2023-8-7 20:14:02 | 显示全部楼层
你好,根据错误信息和代码分析,问题出在获取原始图像形状时,使用了错误的索引方式。为了修复此问题,请修改 merge_images 函数中的以下行:
  1. merged_image = np.zeros(original_image_shape, dtype=np.uint8)
复制代码

改为:
  1. merged_image = np.zeros((original_image_shape[0], original_image_shape[1], 3), dtype=np.uint8)
复制代码

同时,请将 export_result 函数中的以下行:
  1. cv2.imwrite(file_path, image)
复制代码

改为:
  1. cv2.imwrite(file_path, cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
复制代码

这样可以确保导出的图像的颜色通道顺序正确。修改后的完整代码如下:
  1. import cv2
  2. import numpy as np
  3. # 1. 分割遥感影像为多块图幅
  4. def split_image(image, block_size):
  5.     height, width = image.shape[:2]
  6.     block_images = []
  7.     for i in range(0, height, block_size):
  8.         for j in range(0, width, block_size):
  9.             block = image[i:i+block_size, j:j+block_size]
  10.             block_images.append(block)
  11.     return block_images
  12. # 2. 分别对每块图幅转为灰度图像
  13. def convert_to_gray(image):
  14.     gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  15.     return gray_image
  16. # 3. 对各个图像进行边缘检测
  17. def edge_detection(image):
  18.     sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)
  19.     sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)
  20.     edges = cv2.magnitude(sobel_x, sobel_y)
  21.     edges = cv2.convertScaleAbs(edges)
  22.     return edges
  23. # 4. 消除噪声干扰
  24. def remove_noise(image):
  25.     denoised_image = cv2.medianBlur(image, 5)
  26.     return denoised_image
  27. # 5. 将各个图幅合并为一个图幅
  28. def merge_images(images, original_image_shape):
  29.     merged_image = np.zeros((original_image_shape[0], original_image_shape[1], 3), dtype=np.uint8)
  30.     block_size = images[0].shape[0]  # assume all blocks have the same size
  31.     rows = original_image_shape[0] // block_size
  32.     cols = original_image_shape[1] // block_size
  33.     for i, image in enumerate(images):
  34.         x = (i % cols) * block_size
  35.         y = (i // cols) * block_size
  36.         merged_image[y:y+image.shape[0], x:x+image.shape[1], :] = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)  # 转换为彩色图像
  37.     return merged_image
  38. # 6. 导出结果
  39. def export_result(image, file_path):
  40.     cv2.imwrite(file_path, cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
  41. # 示例代码
  42. image_path = r"C:\Users\WINDOWS\Desktop\taiyuan\python\dune\dune.tif"
  43. block_size = 800
  44. # 读取遥感影像
  45. image = cv2.imread(image_path)
  46. # 1. 分割遥感影像为多块图幅
  47. block_images = split_image(image, block_size)
  48. # 2. 分别对每块图幅转为灰度图像
  49. gray_images = [convert_to_gray(block) for block in block_images]
  50. # 3. 对各个图像进行边缘检测
  51. edges_images = [edge_detection(gray) for gray in gray_images]
  52. # 4. 消除噪声干扰
  53. denoised_images = [remove_noise(edges) for edges in edges_images]
  54. # 5. 将各个图幅合并为一个图幅
  55. merged_image = merge_images(denoised_images, image.shape)
  56. # 6. 导出结果
  57. export_result(merged_image, "output.jpg")
复制代码

希望对你有帮助!如果还有其他问题,请随时提问。

如果回答对你有帮助,请给我一个最佳答案!
小甲鱼最新课程 -> https://ilovefishc.com
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2025-4-23 08:34

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表