马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 MSK 于 2017-12-16 23:28 编辑
创建数组
俗话说:
神经网络,深度学习在流弊也要先从创建数组开始~
标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针。这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象。对于数值运算来说这种结构显然比较浪费内存和CPU计算时间
函数库的导入
推荐方式:
首先你得安装numpy才行~
.array()
以通过给array函数传递Python的序列对象创建数组,如果传递的是多层嵌套的序列,将创建多维数组.
>>> a = np.array([1, 2, 3, 4])
>>> b = np.array((5, 6, 7, 8))
>>> c = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
>>> b
array([5, 6, 7, 8])
>>> c
array([[1, 2, 3, 4],
[4, 5, 6, 7],
[7, 8, 9, 10]])
数组的大小可以通过其shape属性获得:
>>> a.shape
(4,)
>>> c.shape
(3, 4)
数组a的shape只有一个元素,因此它是一维数组。而数组c的shape有两个元素,因此它是二维数组,其中第0轴的长度为3,第1轴的长度为4。还可以通过修改数组的shape属性,在保持数组元素个数不变的情况下,改变数组每个轴的长度。
numpy数组与python列表类似,可以索引,可以通过索引修改值
>>> temp = np.array([[2,3,4]])
>>> temp
array([[2, 3, 4]])
>>> temp[0][1]
3
>>> temp[0][1] = 30
>>> temp
array([[ 2, 30, 4]])
通过修改.shape属性来修改数组轴的大小>>> c.shape
(3, 4)
>>> c.shape = 4,3
>>> c
array([[ 1, 2, 3],
[ 4, 4, 5],
[ 6, 7, 7],
[ 8, 9, 10]])
数组c和d其实共享数据存储内存区域,类似python浅拷贝~>>> c
array([[ 1, 2, 3, 4, 4, 5],
[ 6, 7, 7, 8, 9, 10]])
.dtype
数组属性通过.dtype 获得>>> c
array([[ 1, 2, 3, 4, 4, 5],
[ 6, 7, 7, 8, 9, 10]])
>>> c.dtype
dtype('int32')
可以通过dtype参数在创建时指定元素类型:
>>> np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]], dtype=np.float)
array([[ 1., 2., 3., 4.],
[ 4., 5., 6., 7.],
[ 7., 8., 9., 10.]])
arange()
arange函数类似于python的range函数,通过指定开始值、终值和步长来创建一维数组,注意数组不包括终值:>>> np.arange(0,1,0.1)
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
linspace
inspace函数通过指定开始值、终值和元素个数来创建一维数组,可以通过endpoint关键字指定是否包括终值,缺省设置是包括终值:
>>> np.linspace(0, 1, 12)
array([ 0. , 0.09090909, 0.18181818, 0.27272727, 0.36363636,
0.45454545, 0.54545455, 0.63636364, 0.72727273, 0.81818182,
0.90909091, 1. ])
logspace
logspace函数和linspace类似,不过它创建等比数列,下面的例子产生1(10^0)到100(10^2)、有20个元素的等比数列:
都是10^n
>>> np.logspace(0, 2, 20)
array([ 1. , 1.27427499, 1.62377674, 2.06913808,
2.6366509 , 3.35981829, 4.2813324 , 5.45559478,
6.95192796, 8.8586679 , 11.28837892, 14.38449888,
18.32980711, 23.35721469, 29.76351442, 37.92690191,
48.32930239, 61.58482111, 78.47599704, 100. ])
fromfuction()
写一个Python的函数,它将数组下标转换为数组中对应的值,然后使用此函数创建数组
>>> def func(i):
... return i%4+1
...
>>> np.fromfunction(func, (10,))
array([ 1., 2., 3., 4., 1., 2., 3., 4., 1., 2.])
fromfunction函数的第一个参数为计算每个数组元素的函数,第二个参数为数组的大小(shape),因为它支持多维数组,所以第二个参数必须是一个序列,所以刚才采用(10,)
下面的例子中,输出的数组a中的每个元素a[i, j]都等于func2(i, j):
>>> def func2(i, j):
... return (i+1) * (j+1)
...
>>> a = np.fromfunction(func2, (9,9))
>>> a
array([[ 1., 2., 3., 4., 5., 6., 7., 8., 9.],
[ 2., 4., 6., 8., 10., 12., 14., 16., 18.],
[ 3., 6., 9., 12., 15., 18., 21., 24., 27.],
[ 4., 8., 12., 16., 20., 24., 28., 32., 36.],
[ 5., 10., 15., 20., 25., 30., 35., 40., 45.],
[ 6., 12., 18., 24., 30., 36., 42., 48., 54.],
[ 7., 14., 21., 28., 35., 42., 49., 56., 63.],
[ 8., 16., 24., 32., 40., 48., 56., 64., 72.],
[ 9., 18., 27., 36., 45., 54., 63., 72., 81.]])
|