- import numpy as np
- import hashlib
- from scipy.stats import pearsonr
- import os
- # 加载文件
- traces_path = r'traces.npy'
- ciphertext_path = r'ciphertext.npy'
- if not os.path.exists(traces_path):
- raise FileNotFoundError(f"找不到文件: {traces_path}")
- if not os.path.exists(ciphertext_path):
- raise FileNotFoundError(f"找不到文件: {ciphertext_path}")
- traces = np.load(traces_path).astype(float)
- ciphertext = np.load(ciphertext_path)
- # 检查数据格式
- assert len(traces.shape) == 2, "能量迹数据应为二维数组"
- assert len(ciphertext.shape) == 2, "密文数据应为二维数组"
- assert ciphertext.shape[1] == 16, "密文的每条数据应为 16 字节"
- print(f"能量迹形状: {traces.shape}")
- print(f"密文形状: {ciphertext.shape}")
- # 检查密文值范围和数据类型
- print(f"密文数据类型: {ciphertext.dtype}")
- print(f"密文最小值: {ciphertext.min()}, 最大值: {ciphertext.max()}")
- if ciphertext.dtype != np.uint8:
- ciphertext = ciphertext.astype(np.uint8)
- assert ciphertext.min() >= 0 and ciphertext.max() <= 255, "密文值超出范围 [0, 255]!"
- # 限制时间窗口
- traces = traces[:, 50:150]
- # 定义 AES S-Box
- sbox = (
- 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
- 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
- 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
- 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
- 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
- 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
- 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
- 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
- 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
- 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
- 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
- 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
- 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
- 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
- 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
- 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
- )
- # 汉明重量计算函数
- def hamming_weight(value):
- return bin(value).count('1')
- # 恢复密钥代码
- key_candidate = []
- for byte_index in range(16):
- max_corr = 0
- best_key = 0
- for key_guess in range(256):
- hypothetical_hd = []
- for ct in ciphertext:
- intermediate = sbox[ct[byte_index] ^ key_guess]
- hypothetical_hd.append(hamming_weight(intermediate))
- hypothetical_hd = np.array(hypothetical_hd)
- corr = []
- for point in range(traces.shape[1]):
- if np.std(traces[:, point]) == 0 or np.std(hypothetical_hd) == 0:
- continue
- r, _ = pearsonr(traces[:, point], hypothetical_hd)
- corr.append(r)
- if corr:
- max_corr_point = max(corr, key=abs)
- if abs(max_corr_point) > abs(max_corr):
- max_corr = max_corr_point
- best_key = key_guess
- key_candidate.append(best_key)
- # 将恢复的密钥转换为16进制字符串
- key_hex = ''.join(f'{byte:02x}' for byte in key_candidate)
- # 计算MD5并输出flag
- flag = f"flag{{{hashlib.md5(key_hex.encode()).hexdigest()}}}"
- print(flag)
复制代码
输出:
- 能量迹形状: (1200, 200)
- 密文形状: (1200, 16)
- 密文数据类型: uint8
- 密文最小值: 0, 最大值: 255
- flag{60436722c41209a606b8dc5f075d1a6a}
复制代码 |